Communication
ChemComm
3 (a) J. F. Lorenc, G. Lambeth and W. Scheffer, Alkylphenols, John
Wiley & Sons, Inc., 2003; (b) J. L. Wang, K. Aston, D. Limburg,
C. Ludwig, A. E. Hallinan, F. Koszyk, B. Hamper, D. Brown, M. Graneto
and J. T. John, Bioorg. Med. Chem. Lett., 2010, 20(23), 7164; (c) S. Yu,
J. Oh, F. Li, Y. Kwon, H. Cho, J. Shin, S. K. Lee and S. Kim, ACS Med.
Chem. Lett., 2017, 8(10), 1066; (d) M. V. Galkin, S. Sawadjoon, V. Rohde,
M. Dawange and J. S. M. Samec, ChemCatChem, 2014, 6, 179.
4 G. A. Olah, Friedel–Crafts Chemistry, Wiley-VCH, NY, 1973.
5 (a) S. Rengshausen, F. Etscheidt, J. Großkurth, K. L. Luska, A. Bordet
and W. Leitner, Synlett, 2019, 405; (b) A. G. Sergeev and J. F. Hartwig,
Science, 2011, 332, 439; (c) F. Gao, J. D. Webb and J. F. Hartwig,
Angew. Chem. Int. Ed., 2016, 55, 1474; (d) J. M. Nichols, L. M. Bishop,
R. G. Bergman and J. A. Ellman, J. Am. Chem. Soc., 2010, 132, 12554;
(e) S. Kusumoto and K. Nozaki, Nat. Commun., 2015, 6, 6296;
( f ) S. Van den Bosch, W. Schutyser, R. Vanholme, T. Driessen,
S. F. Koelewijn, T. Renders, B. De Meester, W. J. J. Huijgen,
W. Dehaen, C. M. Courtin, B. Lagrain, W. Boerjan and B. F. Sels,
Energy Environ. Sci., 2015, 8, 1748.
6 (a) Y. Arakawa, K. Minagawa and Y. Imada, Polym. J., 2018, 50, 941;
(b) T. Takahashi, M. Yoshimura, H. Suzuka, T. Maegawa, Y. Sawama,
Y. Monguchi and H. Sajiki, Tetrahedron, 2012, 68, 8293.
7 (a) H. Heaney, B. M. Trost and I. Fleming, Comprehensive Organic
Synthesis, Pergamon Press, Oxford, UK, 1991, vol. 2, p. 733; (b) R.
Faust, US Pat., US 20170001936, 2017, p. 20.
8 (a) R. W. Stoughton, R. Baltzly and A. Bass, J. Am. Chem. Soc., 1934,
56, 2007; (b) I. Jeon and I. K. Mangion, Synlett, 2012, 1927;
(c) H. Paghandeh, H. Saeidian and M. Ghaffarzadeh, Lett. Org.
Chem., 2018, 15, 809–814.
9 (a) J. Zakzeski, P. C. A. Bruijnincx, A. L. Jongerius and B. M.
Weckhuysen, Chem. Rev., 2010, 110, 3552; (b) Z. Sun, B. Fridrich,
A. de Santi, S. Elangovan and K. Barta, Chem. Rev., 2018, 118, 614.
10 (a) L. Offner-Marko, A. Bordet, G. Moos, S. Tricard, S. Rengshausen,
B. Chaudret, K. L. Luska and W. Leitner, Angew. Chem. Int. Ed., 2018,
57, 12721–12726; (b) K. L. Luska, A. Bordet, S. Tricard, I. Sinev,
W. Gru¨nert, B. Chaudret and W. Leitner, ACS Catal., 2016, 6, 3719;
(c) S. El Sayed, A. Bordet, C. Weidenthaler, W. Hetaba, K. L. Luska
and W. Leitner, ACS Catal., 2020, 10, 2124; (d) G. Moos,
M. Eimondts, A. Bordet and W. Leitner, Angew. Chem., Int. Ed.,
2020, 59, 11977–11983.
11 (a) H. Wang, L. Li, X.-F. Bai, J.-Y. Shang, K.-F. Yang and L.-W. Xua,
Adv. Synth. Catal., 2013, 355, 341; (b) L. Petitjean, R. Gagne,
E. S. Beach, D. Xiao and P. T. Anastas, Green Chem., 2016, 18, 150;
(c) D. Verma, R. Insyani, H. S. Cahyadi, J. Park, S. M. Kim, J. M. Cho,
J. W. Bae and J. Kim, Green Chem., 2018, 20, 3253; (d) J. M. Asensio,
A. B. Miguel, P.-F. Fazzini, P. W. N. M. van Leeuwen and
B. Chaudret, Angew. Chem., 2019, 131, 11428.
After 5 cycles, the catalyst was characterized by BET, TEM and
SEM-EDX (Table S1, ESI†). BET analysis indicated that the textural
properties of the catalyst remained largely unaffected. According to
TEM analysis, the size of the NPs and their dispersion on the
support did not change significantly. In addition, SEM-EDX did not
evidence any significant leaching of the metal or any modification of
the Fe : Ru ratio under these conditions. These results evidence the
excellent stabilization of the bimetallic NPs by the SILP.
In conclusion, the organometallic approach to graft bime-
tallic Fe25Ru75 nanoparticles on imidazolium-modified silica
materials produces a Fe25Ru75@SILP catalyst with excellent
properties for the hydrodeoxygenation of hydroxyacetophenone
derivatives. The presence of the OH-substituent allows meso-
meric stabilization of the carbocation intermediates and is
essential to observe high hydrodeoxygenation activity under
these non-acidic conditions. Achieving the hydrodeoxygenation
in the absence of acidic co-catalysts is beneficial for this
particular class of substrates, since it prevents side-reactions
such as protiodeacylation. Synthesized through a molecular
approach, the Fe25Ru75@SILP catalyst was found to be highly
active and stable for the selective conversion of a wide range of
hydroxyacetophenones with various functional groups, opening
a versatile route for the production of value-added substituted
ethylphenols from widely available substrates. Preliminary
results indicate that the same retrosynthetic design is applic-
able to ethylaniline derivatives and long chain alkyl phenols,
which are key intermediates in the synthesis of pharmaceuti-
cals and non-ionic surfactants, respectively.
The authors acknowledge financial support by the Max
Planck Society and by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence
Strategy – Exzellenzcluster 2186 ‘‘The Fuel Science Center’’ ID:
390919832. Furthermore, the authors thank Alina Jakubowski,
¨
Annika Gurowski, Justus Werkmeister and Norbert Pfander
(MPI-CEC, Mu¨lheim/Ruhr) for their support with the analytics.
Open Access funding provided by the Max Planck Society.
ˇ
12 M. Koˇzelj and A. Petric, Synlett, 2007, 1699.
13 (a) C. Li, X. Zhao, A. Wang, G. W. Huber and T. Zhang, Chem. Rev.,
2015, 115, 11559; (b) J. M. Nichols, L. M. Bishop, R. G. Bergman and
J. A. Ellman, J. Am. Chem. Soc., 2010, 132, 12554; (c) A. Rahimi,
A. Ulbrich, J. J. Coon and S. S. Stahl, Nature, 2014, 515, 7526.
14 (a) R. S. Bolva and M. K. Markoc, Tenside, Surfactants, Deterg., 1981,
Conflicts of interest
There are no conflicts to declare.
¨
18, 37; (b) H.-D. Dorfler, Interfacial and Colloid Chemistry (in German),
VCH Verlagsges, Weinheim, Germany, 1994.
15 (a) M. Haumann and P. Wasserscheid, SILP and SCILL Catalysis,
Royal Society of Chemistry, 2014; (b) M. Lijewski, J. M. Hogg,
M. Swadzba-Kwasny, P. Wasserscheid and M. Haumann, RSC Adv.,
2017, 7, 27558.
16 (a) K. L. Luska, P. Migowski, S. El Sayed and W. Leitner, Angew.
Chem. Int. Ed., 2015, 54, 14750; (b) Y. Liu, M. A. Mellmer,
D. M. Alonso and J. A. Dumesic, ChemSusChem, 2015, 8, 3983.
References
1 R. O. Hutchins, M. K. Hutchins and I. Fleming, Comprehensive
Organic Synthesis, Elsevier, Oxford, 8th edn, 1991, p. 327.
2 (a) D. Pan, L. Zhang, F. Li, Y. Chen, N. Tao, G. Zhang and Y. Dai,
CN102719820, Faming Zhuanli Shenqing, 2012; (b) Y. Nakai and
N. Haruyama, WO2019130722, 2019.
Chem. Commun.
This journal is © The Royal Society of Chemistry 2020