M. Mirza-Aghayan et al. / Journal of Organometallic Chemistry 693 (2008) 3567–3570
3569
Table 1
Reduction of aromatic aldehydes and ketones using Et
3 2
SiH/PdCl in ethanol
Entry
Substrate
Product
Substrate/Et
3
SiH
Time (min)
Yielda,b
%
1
2
3
4
5
6
7
8
9
Benzaldehyde
Toluene
p-Xylene
2-Methylanisole
3-Methylanisole
4-Methylanisole
o-Cresol
m-Cresol
p-Cresol
p-Xylene
4-Chlorotoluene
Ethylbenzene
1-Ethyl-2-methoxybenzene
Diphenylmethane
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/4
1/2
1/4
1/4
1/4
30
30
30
30
30
30
30
30
30
30
30
60(reflux)
60(reflux)
95.5(4.5)
88.5(10.0)
100.0
86.0
100.0
4-Methylbenzaldehyde
2-Methoxybenzaldehyde
3-Methoxybenzaldehyde
4-Methoxybenzaldehyde
2-Hydroxybenzaldehyde
3-Hydroxybenzaldehyde
4-Hydroxybenzaldehyde
Terephthaldehyde
4-Chlorobenzaldehyde
Acetophenone
2-Methoxyacetophenone
Benzophenone
94.5(2.0)
92.0(6.5)
98.0(2.0)
100.0
10
11
12
13
62.0c
99(1.0)
99.6(0.4)
100.0
a
Determined by GC/Ms analysis.
The number between the parentheses show the percent of the corresponding alcohol.
The reduction of 4-chlorobenzaldehyde gave 62% of 4-chlorotoluene and 19% of toluene.
b
c
J = 8.6 Hz, 2H, CH arom.). MS (70 eV), m/z (%): 122 (100) (M+),
2
Et SiH + PdCl2
3
1
07 (45), 91 (30), 77 (62).
Entry 7, Table 1, H NMR (CDCl
2
Et SiCl + H
3 2
1
3
, 500 MHz): d = 2.36 (s, 3H, CH
3
),
5
.24 (s, 1H, OH), 6.69 (m, 2H, CH arom.), 6.80 (d, J = 7.73 Hz, 1H, CH
arom.), 7.18 (t, J = 7.73 Hz, 1H, CH arom.). MS (70 eV), m/z (%):108
Pd(0)
Et SiH
3
H2 + Et SiOEt
+
3
(90) (M ), 107 (100), 79 (45).
1
Entry 8, Table 1, H NMR (CDCl
3
, 80 MHz): d = 2.21 (s, 3H, CH
3
),
4
.43 (s, 1H, OH), 6.64 (d, J = 8.60 Hz, 2H, CH arom.), 6.97 (d,
+
J = 8.60 Hz, 2H, CH arom.). MS (70 eV), m/z (%): 108 (75) (M ),
1
07 (100), 77 (40).
Entry 12, Table 1, 1H NMR (CDCl
, 500 MHz): d = 1.37 (t,
), 3.96 (s, 3H,
), 6.98 (d, J = 7.50 Hz, 2H, CH arom.), 7.05 (t, J = 7.50 Hz, 1H,
CH arom.), 7.34 (m, 2H, CH arom.). MS (70 eV), m/z (%): 136 (56)
3
EtOH
Et SiPdH
3
J = 7.53 Hz, 3H, CH
3 2
), 2.81 (q, J = 7.53 Hz, 2H, CH
OCH
3
Scheme 2.
+
(
M ), 121 (100), 91 (50), 77 (12).
1
Entry 13, Table 1, H NMR (CDCl
3
, 80 MHz): d = 4.03 (s, 2H, CH
2
),
RCHO + H2
RCH -OH
2
+
7
.17 (s, 10H, CH arom.). MS (70 eV), m/z (%): 168 (87) (M ), 167
(
100), 153 (25), 91 (22).
RCH -OH + Et SiCl
RCH -Cl
2
2
3
RCH -Cl
+
Et SiH
R-CH3 + Et SiCl
References
2
3
3
Scheme 3.
[1] H.U. Blaser, C. Malan, B. Pugin, F. Spindler, H. Steiner, M. Studer, Adv. Synth.
Catal. 345 (2003) 103.
[
[
2] R. Noyori, M. Kitamura, T. Ohkuma, Proc. Natl. Acad. Sci. USA 101 (2004) 5356.
3] M. Hudlicky, Reductions in Organic Chemistry, Ellis Horwood Limited,
Chichester, England, 1984.
GC 8000 series TRIO 1000 gas chromatograph equipped with a cap-
[4] G.B. Brieger, T.J. Nestrick, Chem. Rev. (1974) 567.
[5] R.A.W. Jonstone, A.H. Wilby, I.D. Entwistle, Chem. Rev. 85 (1985) 129.
1
illary column CP Sil.5 CB, 60 M Â 0.25 mm Id. H NMR spectra were
[
[
6] G.-Z. Wang, J.E. Bäckvall, J. Chem. Soc. Chem. Commun. (1992) 980.
7] (a) H. Yu, R. Kang, Y. Ou, Chin. J. Org. Chem. 20 (2000) 441;
(b) H. Lee, M. An, Tetrahedron Lett. 44 (2003) 2775;
recorded on a Bruker 80 or 500 spectrometer using TMS as internal
standard.
(
c) M. Carthy, P.J. Guiry, Tetrahedron 57 (2001) 3809.
[
8] S. Ram, R.E. Ehrenkaufer, Synthesis (1988) 91.
4
. General procedure for reduction of carbonyl compounds
[9] P. Balezewski, J.A. Joule, Synth. Commun. 20 (1990) 2815.
10] F.E. Chen, H. Zhang, W. Yuan, W.W. Zhang, Synth. Commun. 21 (1991) 107.
11] (a) T. Bieg, W. Szeja, Carbohydrate Res. 205 (1990) 90;
[
[
To a solution of carbonyl compounds (0.2 g, 1 eq.) and triethyl-
(
b) D. Beaupere, I. Boutbaiba, A. Wadouachi, C. Frenchou, G. Demailly, R. Uzan,
silane (amount indicated in Table 1) in 5 ml of ethanol was added a
catalytic amount of palladium(II) chloride (10 mol%) under an ar-
gon atmosphere. The resulting mixture was kept under stirring
for the time indicated in Table 1 prior to GC/MS analysis. The pure
products for entry 1–2 and 9–11 were isolated by distillation and
for entry 3–8 and 12–13 were isolated by column chromatography
using hexane/ethylacetate (9/1) as eluent. The products were char-
New. J. Chem. 16 (1992) 405.
[
[
[
12] M. Botta, V. Summa, R. Saladino, R. Nicoletti, Synth. Commun. 21 (1991) 2181.
13] G.W. Kabalka, R.D. Pace, P.P. Wadgaonkar, Synth. Commun. 20 (1990) 2453.
14] H.S.P. Rao, S. Reddy, Tetrahedron Lett. 35 (1994) 171.
[15] (a) F. Alonso, P. Riente, M. Yus, Tetrahedron 64 (2008) 1847;
(b) F. Alonso, P. Riente, M. Yus, Tetrahedron Lett. 49 (2008) 1339.
[
[
16] B. Tamami, H. Mahdavi, Tetrahedron 59 (2003) 821.
17] (a) P. Gamez, F. Fache, M. Lemarie, Tetrahedron Asymm. 16 (2005) 747;
(
b) F. Cederbaum, C. Lamberth, C. Malan, F. Naud, F. Spindler, M. Studer, H.U.
1
acterized using H NMR and mass spectrometry. Spectroscopic
Blaser, Adv. Synth. Catal. 346 (2004) 842.
[
18] (a) C. Chatgilialoglu, C. Ferreri, M. Lucarini, J. Org. Chem. 58 (1993) 249;
data for selected compounds:
(
b) G.L. Larson, in: S. Patai, Z. Rappoport (Eds.), The Chemistry of Organic
1
Entry 3, Table 1, H NMR (CDCl
3
, 80 MHz): d = 2.25 (s, 3H, CH
3
),
Silicon Compounds, Vol. 1, Wiley, Chichester, UK, 1989 (Chapter 11).
3
.83 (s, 3H, OCH
3
), 6.77–7.18 (m, 4H, CH arom.). MS (70 eV), m/z
[19] (a) B. Marciniec, Comprehensive Handbook on Hydrosilylation, Pergamon
Press, Oxford, 1992;
+
(
%): 122 (100) (M ), 107 (62), 91 (50), 77 (56).
(
b) J.A. Reichl, D.H. Berry, Recent Progress in Transition Metal-Catalyzed
1
Entry 5, Table 1, H NMR (CDCl
.83 (s, 3H, OCH ), 6.85 (d, J = 8.60 Hz, 2H, CH arom.), 7.13 (d,
3 3
, 500 MHz): d = 2.33 (s, 3H, CH ),
Reaction on Silicon, Germanium and Tin, Academic Press, 1999;
(c) E. Keinan, N. Greenspoon, J. Am. Chem. Soc. 108 (1986) 7314.
3
3