Paper
RSC Advances
2 C. Amen-Chen, H. Pakdel and C. Roy, Production of 17 B. C. Wu, M. T. Klein and S. I. Sandler, Inuence of
monomeric phenols by thermochemical conversion of
biomass: a review, Bioresour. Technol., 2001, 79, 277–299.
3 Y. Gao, H.-p. Chen, J. Wang, T. Shi, H.-P. Yang and
supercritical uid solvent density on benzyl phenyl ether
pyrolysis: indications of diffusional limitations, Energy
Fuels, 1991, 5, 453–458.
X.-H. Wang, Characterization of products from 18 V. Roberts, S. Fendt, A. A. Lemonidou, X. Li and J. A. Lercher,
hydrothermal liquefaction and carbonation of biomass
model compounds and real biomass, J. Fuel Chem.
Technol., 2011, 39, 893–900.
Inuence of alkali carbonates on benzyl phenyl ether
cleavage pathways in superheated water, Appl. Catal., B,
2010, 95, 71–77.
4 J. Haluk and M. Irmouli, The xed polymer constituents in 19 L. A. Torry, R. Kaminsky, M. T. Klein and M. R. Klotz, The
cooperage oak: cellulose, hemicelluloses and lignin, J. Sci.
Tech. Tonnellerie, 1998, 4, 1–82.
5 E. Dorrestijn, L. J. Laarhoven, I. W. Arends and P. Mulder,
effect of salts on hydrolysis in supercritical and near-
critical water: Reactivity and availability,, J. Supercrit.
Fluids, 1992, 5, 163–168.
The occurrence and reactivity of phenoxyl linkages in 20 J. E. Miller, L. Evans, A. Littlewolf and D. E. Trudell, Batch
lignin and low rank coal, J. Anal. Appl. Pyrolysis, 2000, 54,
153–192.
6 M. T. Klein and P. S. Virk, Model pathways in lignin
microreactor studies of lignin and lignin model compound
depolymerization by bases in alcohol solvents, Fuel, 1999,
78, 1363–1366.
thermolysis. 1. Phenethyl phenyl ether, Ind. Eng. Chem. 21 T. C. Drage, C. H. Vane and G. D. Abbott, The closed system
Fundam., 1983, 22, 35–45.
7 J. Zakzeski, P. C. Bruijnincx, A. L. Jongerius and
pyrolysis of b-O-4 lignin substructure model compounds,
Org. Geochem., 2002, 33, 1523–1531.
B. M. Weckhuysen, The catalytic valorization of lignin for 22 X. Erdocia, A. Toledano, M. A. Corcuera and J. Labidi,
the production of renewable chemicals, Chem. Rev., 2010,
110, 3552–3599.
Organosolv Black Liquor Hydrolysis to Obtain Low
Molecular Weight Phenolic Compounds, in 15th
International Conference on Process Integration, Modelling
and Optimisation for Energy Saving and Pollution Reduction,
ed. P. S. Varbanov, H. L. Lam, J. J. Klemes, S. Pierucci and
J. J. Klemes, 2012, pp. 535–540.
8 M. W. Jarvis, J. W. Daily, H.-H. Carstensen, A. M. Dean,
S. Sharma, D. C. Dayton, D. J. Robichaud and
M. R. Nimlos, Direct Detection of Products from the
Pyrolysis of 2-Phenethyl Phenyl Ether, J. Phys. Chem. A,
2011, 115, 428–438.
23 S. Kang, X. Li, J. Fan and J. Chang, Classied Separation of
Lignin Hydrothermal Liqueed Products, Ind. Eng. Chem.
Res., 2011, 50, 11288–11296.
9 A. Beste and A. C. Buchanan, Role of Carbon–Carbon Phenyl
Migration in the Pyrolysis Mechanism of b-O-4 Lignin Model
Compounds: Phenethyl Phenyl Ether and a-Hydroxy 24 B. Doherty and T. Rainey, Bagasse Fractionation by the Soda
Phenethyl Phenyl Ether, J. Phys. Chem. A, 2012, 116, 12242–
12248.
10 A. Beste and A. C. Buchanan Iii, Kinetic simulation of the
thermal degradation of phenethyl phenyl ether, a model
Process, in Proceedings of the Australian Society of Sugar Cane
Technologists, ed. D. Hogarth, Australian Society of Sugar
Cane Technologists Ltd/Scribe Consulting, Australia,
Queensland, Mackay, 2006, pp. 545–554.
compound for the b-O-4 linkage in lignin, Chem. Phys. 25 H.-J. Eom, D.-W. Lee, Y.-K. Hong, S.-H. Chung, M.-g. Seo and
Lett., 2012, 550, 19–24.
11 V. B. F. Custodis, P. Hemberger, Z. Ma and J. A. van
Bokhoven, Mechanism of Fast Pyrolysis of Lignin: Studying
K.-Y. Lee, Effects of a sodium carbonate (Na2CO3) additive on
the conversion of phenethyl phenyl ether (PPE) in high-
temperature water, Appl. Catal., A, 2014, 472, 152–159.
Model Compounds, J. Phys. Chem. B, 2014, 118, 8524–8531. 26 X. Wu, J. Fu and X. Lu, Kinetics and mechanism of
12 R. W. Thring, Alkaline degradation of Alcell® lignin, Biomass
Bioenergy, 1994, 7, 125–130.
hydrothermal decomposition of lignin model compounds,
Ind. Eng. Chem. Res., 2013, 52, 5016–5022.
13 O. Bobleter, Hydrothermal degradation of polymers derived 27 L. Fernandes, H. Gaspar and G. Bernardo, Inhibition of
from plants, Prog. Polym. Sci., 1994, 19, 797–841.
14 R. Sanghi and V. Singh, Green Chemistry for Environmental
Remediation, Wiley, 2012.
thermal degradation of polystyrene by C60 and PCBM: A
comparative study, Polym. Test., 2014, 40, 63–69.
28 F. R. Mayo, The dimerization of styrene, J. Am. Chem. Soc.,
1968, 90, 1289–1295.
15 A. Demirbas, Mechanisms of liquefaction and pyrolysis
reactions of biomass, Energy Convers. Manage., 2000, 41, 29 P. J. Flory, Mechanism of vinyl polymerizations, J. Am. Chem.
633–646. Soc., 1937, 59, 241–253.
16 V. M. Roberts, V. Stein, T. Reiner, A. Lemonidou, X. Li and 30 V. M. Roberts, Homogeneous and Heterogeneous Catalyzed
J. A. Lercher, Towards quantitative catalytic lignin
depolymerization, Chemistry, Weinheim an der Bergstrasse,
Germany, 17 (2011) pp. 5939–5948.
Hydrolysis of Lignin, 2008.
This journal is © The Royal Society of Chemistry 2016
RSC Adv., 2016, 6, 57889–57901 | 57901