Please do not adjust margins
Page 7 of 9
New Journal of Chemistry
Journal Name
ARTICLE
1
2
3
4
5
6
7
when the activated aryl chlorides meet with the oxidized
arylboronic acids. The Pd1Cu4/CexOy catalysts are of great
significance in the use of inexpensive metals to synergistically
catalyze the SM coupling reactions under the mild conditions.
DOI: 10.1039/C9NJ06195A
8
9
Conflicts of interest
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
There are no conflicts to declare.
Acknowledgments
The authors gratefully acknowledge the support from the
National Natural Science Foundation of China (No. 21766022).
Scheme 1 The proposed catalytic mechanism of Pd1Cu4/CexOy catalysts in the SM
coupling reactions under visible light irradiation.
Notes and references
1
E. Fernandez, H. Garrido, M. Boronat, A. L. Perez, A. Corma, J.
reaction systems catalyzed by Pd1Cu4/CexOy (Table 2). It can be
observed from the results that the Pd1Cu4/CexOy catalysts have
a good universality for the most of the substrates. However,
since there are strong electron-withdrawing groups on aryl
halide including -OCH3 (Entry 3a, Entry 8b) and-NO2 (Entry 10b),
the yields of the products can only reach 76%, 78% and 53%,
respectively. The 1H NMR and 13C NMR spectra of all the
products are provided in supporting information.
The proposed catalytic mechanism is shown in Scheme 1.
The presence of Pd and Cu2O can expand the visible light
absorption range of CexOy, further promote its production of
photogenerated electrons, and thereby enrich the electron
density of Pd nanoparticles. The Pd nanoparticles with high
electron density can effectively activate the aryl halides and
promote the oxidative addition reactions by accelerating the
formation of the ligand ArPdIIX.26 Meanwhile, the arylboronic
acids can also be activated by photogenerated holes of
CexOy.43 When the oxidized arylboronic acids meet with the
activated aryl halides, the final products of the coupling
reactions are obtained.
Am. Chem. Soc., 2019, 141, 1928-1940.
2
3
D.D. Yu, J. Bai, J.Z. Wang, C.P. Li, J.Catal., 2018, 365, 195-203.
J.P. Rygus, and C.M. Crudden, J. Am. Chem. Soc., 2017, 139,
18124-18137.
S. Rohani, A. Ziarati, G.M. Ziarani, A. Badiei, T. Burgi, Catal.
Sci. Technol., 2019, 9, 3820-3827.
4
5
6
G.Y. Bao, J. Bai, C.P. Li, Org. Chem. Front., 2019, 6, 352-361.
S. Zhang, C.R. Chang, Z.Q. Huang, Y.Y. Ma, W. Gao, J. Li, Y.Q.
Qu, ACS Catal., 2015, 5, 6481-6488.
7
8
R.T. McGuire, J.F. Paffile, Y.Q. Zhou, M. Stradiotto, ACS Catal.,
2019, 9, 9292-9297.
M. Yamada, Y. Shio, T. Akiyama, T. Honma, Y. Ohki, N.
Takahashi, K. Murai, M. Arisawa, Green Chem., 2019, 21,
4541-4549.
9
P. Louis, L. Tremblay, A Fabrikant, B.A. Arndtsen, ACS Catal.,
2018, 8, 5350-5354.
10 P.K. Verma, S. Mandal, K. Geetharani, ACS Catal., 2018, 8,
4049-4054.
11 B.V. Vaerenbergh, J. Lauwaert, J.W. Thybaut, P. Vermeir, J.D
Clercq, Chem. Eng. J., 2019, 374, 576-588.
12 M. Mart, W. Tylus, A.M. Trzeciak, Catal., 2018, 8, 552-568.
13 Y.L Huang, Q.L. Wei, Y.Y. Wang, L.Y. Dai, Carbon, 2018, 136,
150-159.
14 A.D. Zotto, D. Zuccaccia, Catal. Sci. Technol., 2017, 7, 3934-
3951.
15 Y.T. Chan, I.S. Huang, M.K. Tsai, Phys. Chem. Chem. Phys.,
2019, 21, 22704-22710.
16 B. Kuhne, H. Vogel, R. Meusinger, S. Kunz, M. Kunz, Catal. Sci.
Technol., 2018, 8, 755-767.
17 A. Chakravarty, G. De, Dalton Trans., 2016, 45, 12496-12506.
18 J.O. Messeguer, L. Liu, S.G. Garcia, A.L. Perez, J. Am. Chem.
Soc., 2015, 137, 3894-3900.
19 Y. Dong, M. Wang, J. Liu, W. Ma, Q. Liu, Chem. Commun.,
2011, 47, 7380-7382.
20 K. Jiang, R.B. Sandberg, A.J. Akey, X.Y. Liu, D.C. Bell, J.K.
Norskov, K. Chan, H.T. Wang, Nat Catal., 2018, 1, 111-119.
21 B. Wang, M.Andiappan, Green Chem., 2019, 21, 5284-5290.
22 H.J. jung, S.Y. Lee, C.W. Lee, M.K. Cho, D.H. Won, C. Kim, H.S.
Oh, B.K. Min, Y.J.Hwang, J. Am. Chem. Soc., 2019, 141, 4624-
4633.
23 A.K. Kar, R. Srivastava, Inorg. Chem. Front., 2019, 6, 576-589.
24 L.L Zhang, A.Q. Wang, J.T. Miller, X.F. Yang, W.T. Wang, L. Li,
Y.Q. Huang, C.Y. Mou, T. Zhang, ACS Catal., 2014, 4, 1546-
1553.
25 M.B. Ibrahim, I.M. Abdullahi, R. Suleiman, Arab J Sci Eng.,
2018, 43, 271-280.
4. Conclusions
In conclusion, the Pd1Cu4/CexOy can not only exhibit excellent
catalytic performance in the thermal reactions of aryl
bromides and arylboronic acids, but also effectively activate
aryl chlorides for SM coupling reactions under the visible light
irradiation at room temperature. The synergy of each
component in the catalysts contributes to the activation of
reactants. The high specific surface areas and abundant
oxygen vacancies of the CexOy nanotubes can promote the
redox reactions. Moreover, the presence of Pd and Cu2O
enhance the visible light absorption of the CexOy, further
promote its photogenerated electron generation, then enrich
the electron density of Pd nanoparticles. The electron-rich Pd
nanoparticles can activate strong C-Cl bonds of aryl chlorides.
Meanwhile, the arylboronic acids can also be activated by the
photogenerated holes of CexOy. The roles of photogenerated
electrons and holes in the reactions are also demonstrated by
This journal is © The Royal SoCiety of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 7
Please do not adjust margins