€
18 T. Zweifel, J. V. Naubron and H. Grutzmacher, Angew. Chem., Int.
catalyst. These results are consistent with the suggestion that an
excess of water is beneficial for the hydration of nitriles to the cor-
responding amides and water is a superior medium for the direct
synthesis of amides from primary alcohols (Table S2†).
Ed., 2009, 48, 559.
19 M. G. Crestani, A. Arevalo and J. J. Garcıa, Adv. Synth. Catal., 2006,
348, 732.
ꢀ
ꢀ
20 F. Damkaci and P. DeShong, J. Am. Chem. Soc., 2003, 125, 4408.
21 K. Tani and B. M. Stoltz, Nature, 2006, 441, 731.
22 N. A. Owston, A. J. Parker and J. M. J. Williams, Org. Lett., 2007, 9,
3599.
23 C. Chen and S. H. Hong, Org. Biomol. Chem., 2011, 9, 20.
24 P. T. Anastas and J. C. Warner, Green Chemistry: Theory and
Practice, Oxford University Press, Oxford, 1998.
25 J. H. Clark, Green Chem., 1999, 1, 1.
26 Thematic issue on ‘‘Green Chemistry’’, Acc. Chem. Res., 2002, 35, 685.
27 K. Shimizu, K. Ohshima and A. Satsuma, Chem.–Eur. J., 2009, 15,
9977.
28 Y. Wang, D. P. Zhu, L. Tang, S. J. Wang and Z. Y. Wang, Angew.
Chem., Int. Ed., 2011, 50, 8917.
29 T. Oishi, K. Yamaguchi and N. Mizuno, Angew. Chem., Int. Ed.,
2009, 48, 6286.
30 T. Oishi, K. Yamaguchi and N. Mizuno, Top. Catal., 2010, 53, 479.
31 K. Yamaguchi, H. Kobayashi, T. Oishi and N. Mizuno, Angew.
Chem., Int. Ed., 2011, 50, 1.
32 K. Yamaguchi, H. Kobayashi, Y. Wang, T. Oishi, Y. Ogasawara and
N. Mizuno, Catal. Sci. Technol., 2013, DOI: 10.1039/c2cy20178j.
33 X. C. Yu, C. Z. Liu, L. Jiang and Q. Xu, Org. Lett., 2011, 13, 6184.
34 V. D. Makwana, Y. C. Son, A. R. Howell and S. L. Suib, J. Catal.,
2002, 210, 46.
In summary, well-organized MnO2 nanorods on graphene oxide
(MnO2/GO) were fabricated though a novel and easily controlled
chemical route. Rod-like MnO2 with 5–20 nm diameter and 100–
600 nm length were uniformly and densely attached on both side of
GO sheets. Compared with bare MnO2, the MnO2/GO nano-
composite is an efficient heterogeneous catalyst for a widely appli-
cable synthesis of primary amides from primary alcohols and
ammonia as well as for transformation of aldehydes or nitriles. More
importantly, water is a superior medium for this reaction compared
with other commonly used organic solvents, which is beneficial for
catalyst/product separation. MnO2/GO catalyst has good recycla-
bility in these reactions. High dispersion in water, high MnO2
dispersion on GO and suitable functional groups on carbon materials
are important for a synergistic ammoxidation catalytic activity of
MnO2 and GO in the hybrid. These features should be potentially
important for the synthesis of fine chemicals and pharmaceuticals in
the future.
35 Y. Wang, H. Kobayashi, K. Yamaguchi and N. Mizuno, Chem.
Commun., 2012, 48, 2642.
36 X. J. Yang, J. Y. Han, Z. P. Du, H. Yuan, F. Jin and Y. X. Wu, Catal.
Commun., 2010, 11, 643.
Acknowledgements
This work was financially supported by the National Natural Science
Foundation of China (Contract nos. 21073159, LZ12B030001).
37 T. Oishi, K. Yamaguchi and N. Mizuno, ACS Catal., 2011, 1, 1351.
38 V. B. R. Boppana and F. Jiao, Chem. Commun., 2011, 47, 8973.
39 D. Li and R. B. Kaner, Science, 2008, 320, 1170.
40 G. M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth and
€
R. Mulhaupt, J. Am. Chem. Soc., 2009, 131, 8262.
Notes and references
41 R. F. Nie, J. H. Wang, L. N. Wang, Y. Qin, P. Chen and Z. Y. Hou,
Carbon, 2012, 50, 586.
42 Y. J. Gao, D. Ma, L. Wang, J. Guan and X. H. Bao, Chem. Commun.,
2011, 47, 2432.
1 C. L. Allen and J. M. Williams, Chem. Soc. Rev., 2011, 40, 3405.
2 E. Valeur and M. Bradley, Chem. Soc. Rev., 2009, 38, 606.
3 S. A. Lawrence, Amines: Synthesis, Properties and Applications,
Cambridge University Press, Cambridge, 2005.
4 C. Gunanathan and D. Milstein, Angew. Chem., Int. Ed., 2008, 47,
8661.
5 B. Schlummer and U. Scholz, Adv. Synth. Catal., 2004, 346, 1599.
6 V. R. Pattabiraman and J. W. Bode, Nature, 2011, 480, 471.
7 A. Khalafi-Nezhad, A. Parhami, M. N. S. Rad and A. Zarea,
Tetrahedron Lett., 2005, 46, 6879.
€
43 Z. P. Zhu, D. S. Su, G. Weinberg and R. Schlogl, Nano Lett., 2004, 4,
2255.
44 K. Erickson, R. Erni, Z. H. Lee, N. Alem, W. Gannett and A. Zettl,
Adv. Mater., 2010, 22, 4467.
45 R. I. Jafri, N. Rajalakshmi and S. Ramaprabhu, J. Mater. Chem.,
2010, 20, 7114.
46 Y. Li, X. B. Fan, J. J. Qi, J. Y. Ji, S. L. Wang, G. L. Zhang and
F. B. Zhang, Nano Res., 2010, 3, 429.
47 E. J. Yoo, T. Okata, T. Akita, M. Kohyama, J. Nakamura and
I. Honma, Nano Lett., 2009, 9, 2255.
8 W. J. Yoo and C. J. Li, J. Am. Chem. Soc., 2006, 128, 13064.
9 R. Ohmura, M. Takahata and H. Togo, Tetrahedron Lett., 2010, 51,
4378.
48 M. N. Patel, X. Q. Wang, D. A. Slanac, D. A. Ferrer, S. Dai,
K. P. Johnston and K. J. Stevenson, J. Mater. Chem., 2012, 22, 3160.
49 J. Su, M. H. Cao, L. Ren and C. W. Hu, J. Phys. Chem. C, 2011, 115,
14469.
50 H. J. Huang and X. Wang, Nanoscale, 2011, 3, 3185.
51 S. Chen, J. W. Zhu, X. D. Wu, Q. F. Han and X. Wang, Nano, 2010,
4, 2822.
10 L. P. Cao, J. Y. Ding, M. Gao, Z. H. Wang, J. Li and A. X. Wu, Org.
Lett., 2009, 11, 3810.
11 M. Mentel, M. J. Beier and R. Breinbauer, Synthesis, 2009, 9, 1463.
12 G. E. Veitch, K. L. Bridgwood and S. V. Ley, Org. Lett., 2008, 10,
3623.
13 M. B. Smith, Compendium of Organic Synthetic Methods, Wiley, New
York, 2001.
ꢁ
52 T. Gao, H. Fjellvag and P. Norby, Anal. Chim. Acta, 2009, 648, 235.
14 B. Shen, D. M. Makley and J. N. Johnston, Nature, 2010, 465, 1027.
15 M. Tamura, H. Wakasugi, K. Shimizu and A. Satsuma, Chem.–Eur.
J., 2011, 17, 11428.
16 K. Yamaguchi, M. Matsushita and N. Mizuno, Angew. Chem., Int.
Ed., 2004, 43, 1576.
53 H. W. Nesbitt and D. Banerjee, Am. Mineral., 1998, 83, 305.
54 D. Banerjee and H. W. Nesbitt, Geochim. Cosmochim. Acta, 2001, 65,
1703.
55 Y. F. Li, H. Q. Yu, H. Li, C. G. An, K. Zhang, K. M. Liew and
X. F. Liu, J. Phys. Chem. C, 2011, 115, 6229.
56 Y. F. Li, H. Li, K. Zhang and K. M. Liew, Carbon, 2012, 50, 566.
17 K. Yamaguchi, H. Fujiwara, Y. Ogasawara, M. Kotani and
N. Mizuno, Angew. Chem., 2007, 119, 3996.
18118 | J. Mater. Chem., 2012, 22, 18115–18118
This journal is ª The Royal Society of Chemistry 2012