ChemComm
Communication
D. J. Cole-Hamilton, Chem. Commun., 2007, 3154; (c) G. Beamson,
A. J. Papworth, C. Philipps, A. M. Smith and R. Whyman, Adv. Synth.
Catal., 2010, 352, 869; (d) G. Beamson, A. J. Papworth, C. Philipps,
A. M. Smith and R. Whyman, J. Catal., 2010, 269, 93; (e) M. Stein and
B. Breit, Angew. Chem., Int. Ed., 2013, 52, 2231.
Scheme 2 Dissymmetric secondary amine preparation.
¨
6 Some recent reviews: (a) K. Junge, K. Schroder and M. Beller, Chem.
Commun., 2011, 47, 4849; (b) D. Addis, S. Das, K. Junge and
M. Beller, Angew. Chem., Int. Ed., 2011, 50, 6004; (c) P. A. Dub and
T. Ikariya, ACS Catal., 2012, 2, 1718.
7 Some representative examples: Rh: (a) R. Kuwano, M. Takahashi
and Y. Ito, Tetrahedron Lett., 1998, 39, 1017; Pt: (b) S. Hanada,
Y. Motoyama and H. Nagashima, Tetrahedron Lett., 2006, 47, 6173;
(c) S. Hanada, E. Tsutsumi, Y. Motoyama and H. Nagashima, J. Am.
Chem. Soc., 2009, 131, 15032; Zn: (d) S. Das, D. Addis, S. Zhou,
K. Junge and M. Beller, J. Am. Chem. Soc., 2010, 132, 1770; Ir:
(e) Y. Motoyama, M. Aoki, N. Takaoka, R. Aoto and H. Nagashima,
Chem. Commun., 2009, 1574.
8 (a) S. Zhou, K. Junge, D. Addis, S. Das and M. Beller, Angew. Chem.,
Int. Ed., 2009, 48, 9507; (b) Y. Sunada, H. Kawakami, Y. Motoyama
and H. Nagashima, Angew. Chem., Int. Ed., 2009, 48, 9511;
(c) H. Tsutsumi, Y. Sunada and H. Nagashima, Chem. Commun.,
Scheme 3 Plausible mechanism (*: detected products by GC-MS at 69%
conversion, under neat conditions at 100 1C for 1 h).
´
2011, 47, 6581; (d) D. Bezier, G. T. Venkanna, J.-B. Sortais and
C. Darcel, ChemCatChem, 2011, 3, 1747.
9 (a) J. T. Reeves, Z. Tan, M. A. Marsini, Z. S. Han, Y. Xu, D. C. Reeves,
H. Lee, B. Z. Lu and C. H. Senanayake, Adv. Synth. Catal., 2013,
355, 47; (b) Y. Motoyama, K. Mitsui, T. Ishida and H. Nagashima,
J. Am. Chem. Soc., 2005, 127, 13150; (c) H. Sasakuma, Y. Motoyama
and H. Nagashima, Chem. Commun., 2007, 4916; (d) S. Hanada,
T. Ishida, Y. Motoyama and H. Nagashima, J. Org. Chem., 2007,
72, 7551; (e) M. Igarashi and T. Fuchikami, Tetrahedron Lett., 2001,
42, 1945.
10 S. Hanada, Y. Motoyama and H. Nagashima, Eur. J. Org. Chem.,
2008, 4097.
11 (a) S. Zhou, D. Addis, S. Das, K. Junge and M. Beller, Chem.
Commun., 2009, 4883; (b) S. Enthaler, Eur. J. Org. Chem., 2011,
4760; (c) see ref. 8d.
5 h, a ruthenium hydride species was detected in 1H-NMR at d =
À10.2 ppm, which seems to result from an oxidative addition of
the hydrosilane.17 Another important observation is the very
small amount of nitrile derivative 2 observed under the opti-
mized standard conditions (1–3 mol%) using [RuCl2(arene)]2
catalysts and PhSiH3 as the silane. A proposed mechanism for
this transformation is shown in Scheme 3. The dehydration of
primary amides 1 leading to nitriles 2, already described using
ruthenium catalysts under hydrosilylation conditions,10 seems
to proceed easily under our conditions. The obtained nitrile
compounds 2 should react fast with silane to lead to the
N-silylimines A,18 which can be fully reduced into the disilylated
primary amines B.19 The important step in the observed selectivity
of the described reaction seems to be the in situ formation of the
aldimine 3 from the N-silylimine A and the disilylated primary
amine B. It has already been shown that the hydrosilylation of
aldimines into amines using [RuCl2(p-cymene)]2 catalysts (1 mol%)
proceeded at room temperature in 2 h.16a
12 S. Zhou, K. Junge, D. Addis, S. Das and M. Beller, Org. Lett., 2009,
11, 2461.
13 S. Das, B. Wendt, K. Muller, K. Junge and M. Beller, Angew. Chem.,
Int. Ed., 2012, 51, 1662.
¨
´
´
14 S. Laval, W. Dayoub, L. Pehlivan, E. Metay, A. Favre-Reguillon,
D. Delbrayelle, G. Mignani and M. Lemaire, Tetrahedron Lett.,
2011, 52, 4072.
´
15 (a) F. Jiang, D. Bezier, J.-B. Sortais and C. Darcel, Adv. Synth. Catal.,
´
2011, 353, 239; (b) D. Bezier, F. Jiang, J.-B. Sortais and C. Darcel,
Eur. J. Inorg. Chem., 2012, 1333; (c) J. Zheng, L. C. Misal Castro,
T. Roisnel, C. Darcel and J.-B. Sortais, Inorg. Chim. Acta, 2012,
380, 301; (d) H. Jaafar, H. Li, L. C. Misal Castro, J. Zheng,
T. Roisnel, V. Dorcet, J.-B. Sortais and C. Darcel, Eur. J. Inorg. Chem.,
2012, 3546; (e) L. C. Misal Castro, J.-B. Sortais and C. Darcel, Chem.
Commun., 2012, 48, 151; ( f ) L. C. Misal Castro, H. Li, J.-B. Sortais
In summary, we have shown a selective one pot reduction of
primary amides into secondary amines with a cheap and simple
stable ruthenium complex, [RuCl2(mesitylene)]2, as an efficient
catalyst under hydrosilylation and solvent-free conditions.
We are grateful to CNRS, University of Rennes 1, and
´
and C. Darcel, Chem. Commun., 2012, 48, 10514; (g) D. Bezier,
G. T. Venkanna, L. C. Misal Castro, J. Zheng, T. Roisnel,
J.-B. Sortais and C. Darcel, Adv. Synth. Catal., 2012, 354, 1879.
16 (a) B. Li, J.-B. Sortais, C. Darcel and P. H. Dixneuf, ChemSusChem,
2012, 5, 396; (b) B. Li, C. B. Bheeter, C. Darcel and P. H. Dixneuf, ACS
Catal., 2011, 1, 1221.
`
´
Ministere de l’Enseignement Superieur et de la Recherche for
support, the Chinese Scholarship Council (grant to B.L.).
17 (a) V. Montiel-Palma, R. N. Perutz, M. W. George, O. J. Jina and
S. Sabo-Etienne, Chem. Commun., 2000, 1175; (b) T. Tuttle, D. Wang,
Notes and references
¨
W. Thiel, J. Kohler, M. Hofmann and J. Weis, Dalton Trans., 2009,
1 (a) R. C. Larock, Comprehensive Organic Transformations: a Guide to
Functional Group Preparation, Wiley-VCH, New York, 1989;
(b) S. A. Lawrence, Amines: Synthesis, Properties and Applications,
Cambridge University Press, Cambridge, 2004.
2 J. Seyden-Penne, Reductions by the Alumino- and Borohydrides in
Organic Synthesis, Wiley, New York, 2nd edn, 1997.
5894; (c) G. Meister, G. Rheinwald, H. Stoeckli-Evans and G. Su¨ss-
Fink, J. Organomet. Chem., 1995, 496, 197; (d) K. Umezawa-Vizzini
and T. R. Lee, Organometallics, 2004, 23, 1448; (e) V. K. Dioumaev,
B. R. Yoo, L. J. Procopio, P. J. Carroll and D. H. Berry, J. Am. Chem.
Soc., 2003, 125, 8936.
18 D. V. Gutsulyak and G. I. Nikonov, Angew. Chem., Int. Ed., 2010, 49, 7553.
¨
3 (a) O. Riant, N. Mostefaı and J. Courmarcel, Synthesis, 2004, 2943; 19 Representative examples of reduction of RCN to RCH2NH2 with
(b) J.-F. Carpentier and V. Bette, Curr. Org. Chem., 2002, 6, 913;
(c) H. Nishiyama, Hydrosilylations of carbonyl and imine compounds,
in Transition Metals for Organic Synthesis, 2nd edn, 2004, vol. 2, p. 182.
4 (a) G. Pelletier, W. S. Bechara and A. B. Charette, J. Am. Chem. Soc.,
2010, 132, 12817; (b) J. Magano and J. R. Dunetz, Org. Process Res.
Dev., 2012, 16, 1156.
ruthenium catalysts: (a) S. Enthaler, K. Junge, D. Addis, G. Erre and
M. Beller, ChemSusChem, 2008, 1, 1006; (b) S. Enthaler, D. Addis,
K. Junge, G. Erre and M. Beller, Chem.–Eur. J., 2008, 14, 9491;
(c) D. Addis, S. Enthaler, K. Junge, B. Wendt and M. Beller, Tetra-
hedron Lett., 2009, 50, 3654; (d) R. Reguillo, M. Grellier,
N. Vautravers, L. Vendier and S. Sabo-Etienne, J. Am. Chem. Soc.,
¨
5 Representative examples: (a) B. Wojcik and H. Adkins, J. Am. Chem.
2010, 132, 7854; (e) C. Gunanathan, M. Holscher and W. Leitner,
ˇ
Soc., 1934, 56, 2419; (b) A. A. Nu´nez Magro, G. R. Eastham and
Eur. J. Inorg. Chem., 2011, 3381.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 3691--3693 3693