G Model
CCLET 2968 1–3
J.-Q. Ye et al. / Chinese Chemical Letters xxx (2014) xxx–xxx
(b) S. Arseniyadis, K.S. Kyler, D.S. Watt, Addition and substitution reactions of [8] M. Lamani, P. Devadig, K.R. Prabhu,
3
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
A
non-metal catalysed oxidation of 173
nitrile-stabilized carbanions, in: W.G. Dauben (Ed.), Organic Reactions, Wiley,
New York, 1984;
primary azides to nitriles at ambient temperature, Org. Biomol. Chem. 10 174
(2012) 2753–2759.
175
(c) R.C. Larock, Comprehensive Organic Transformations, vol. 102, VCH, New
York, 1989, pp. 964–965;
[9] (a) L. Zhang, H. Chen, Z. Zha, Z.Y. Wang, Electrochemical tandem synthesis of 176
oximes from alcohols using KNO3 as the nitrogen source, Mediated by tin micro- 177
(d) A. Kleemann, J. Engel, B. Kutscher, D. Reichert, Pharmaceutical Substance,
Synthesis, Patents, Applications, 4th ed., Georg Thieme, Stuggart, 2001;
(e) J.S. Miller, J.L. Manson, Designer magnets containing cyanides and nitriles,
Acc. Chem. Res. 34 (2001) 563–570;
(f) M.B. Smith, J. March, March’s Advanced Organic Chemistry: Reactions,
Mechanisms and Structure, 6th ed., Wiley, Hoboken, NJ, 2007;
(g) P. Magnus, D.A. Scott, M.R. Fielding, Direct conversion of a,b-unsaturated
nitriles into cyanohydrins using Mn(dpm)3 catalyst, dioxygen and phenylsilane,
Tetrahedron Lett. 42 (2001) 4127–4129.
spheres in aqueous medium, Chem. Commun. 48 (2012) 6574–6576;
(b) L. Zhang, J.H. Su, Z. Zha, Z.Y. Wang, Direct electrochemical imidation of 179
aliphatic aminesvia anodic ooxidation, Chem. Commun. 47 (2011) 5488–5490;
(c) L. Meng, J.H. Su, Z. Zha, Z.Y. Wang, Direct electrosynthesis of ketones from 181
benzylic methylenes by electrooxidative C–H activation, Chem. Eur. J. 19 (2013) 182
5542–5545;
178
180
183
(d) Z.L. Zhang, J.H. Su, Z. Zha, Z.Y. Wang, A novel approach for the one-pot 184
preparation of a-ketoamides by anodic oxidation, Chem. Commun. 49 (2013) 185
8982–8984;
186
[2] (a) K.W. Rosenmund, E. Struck, Das am Ringkohlenstoff gebundene Halogen und
sein Ersatz durch andere Substituenten. I. Mitteilung: Ersatz des Halogens durch
die Carboxylgruppe, Ber. Dtsch. Chem. Ges. 2 (1919) 1749–1756;
(b) D.F. Mowry, The preparation of nitriles, Chem. Rev. 42 (1948) 189–283;
(c) K. Friedrich, K. Wallenfels, The chemistry of the cyano group, in: Z. Rappoport
(Ed.), The Chemistry of the Functional Group, Wiley Interscience, New York, 1970,
pp. 67–122;
(e) H.Y. Ma, Z. Zha, Z.Y. Wang, Electrosynthesis of oxadiazoles from benzoylhy- 187
drazines, Chin. Chem. Lett. 24 (2013) 780–782.
[10] (a) C.J. Li, Cross-dehydrogenative coupling (CDC): exploring C–C bond formations 189
beyond functional group transformations, Chem. Res. 42 (2009) 280–2891;
(b) D.R. Buckle, in: L.A. Paquette (Ed.), Encyclopedia of Reagents for Organic Q3191
Synthesis, John Wiley & Sons, 1995;
(c) D. Walker, J.D. Hiebert, 2,3-Dichloro-5,6-dicyanobenzoquinone and its reac- 193
tions, Chem. Rev. 67 (1967) 153–159;
188
190
192
194
(d) J. Lindley, Copper assisted nucleophilic substitution of aryl halogen, Tetrahe-
dron 40 (1984) 1433–1456;
(e) P. Kurtz, Houben-Weyl: Methoden der Organischen Chemie, 4th ed., Georg
Thieme, Stuttgart, 1952.
(d) Y.Z. Li, B.J. Li, X.Y. Lu, S. Lin, Z.J. Shi, Cross dehydrogenative arylation (CDA) of a 195
benzylic ch bond with arenes by iron catalysis, Angew. Chem. Int. Ed. 48 (2009) 196
3817–3820;
197
[3] (a) T. Schareina, A. Zapf, M. Beller, Potassium hexacyanoferrate(II)—a new cya-
nating agent for the palladium-catalyzed cyanation of aryl halides, Chem. Com-
mun. (2004) 1388–1389;
(e) Y. Zhang, C.J. Li, Highly efficient cross-dehydrogenative-coupling between 198
ethers and active methylene compounds, Angew. Chem. Int. Ed. 45 (2006) 199
1949–1952.
200
201
(b) D. Wang, L. Kuang, Z. Li, K. Ding, L-Proline-promoted rosenmund-von braun
reaction, Synlett (2008) 69–72;
(c) H.J. Cristau, A. Ouali, J.F. Spindler, M. Taillefer, Mild and efficient
copper-catalyzed cyanation of aryl iodides and bromides, Chem. Eur. J. 11
(2005) 2483–2492;
[11] For selected examples on radical intermediates, see:
(a) J.C. Walton, A. Studer, Evolution of functional cyclohexadiene-based syn- 202
thetic reagents: the importance of becoming aromatic, Acc. Chem. Res. 38 203
(2005) 794–802;
(b) W.P. Liu, Y.M. Li, K.S. Liu, Z.P. Li, Iron-catalyzed carbonylation-peroxidation 205
of alkenes with aldehydes and hydroperoxides, Am. Chem. Soc. 133 (2011) 206
10756–10759;
(c) K. Xu, Y.B. Hu, S. Zhang, Z.G. Zha, Z.Y. Wang, Direct amidation of alcohols 208
with n-substituted formamides under transition-metal-free conditions, Chem. 209
Eur. J. 18 (2012) 9793–9797;
(d) K. Xu, Y. Fang, Z.C. Yan, Z.G. Zha, Z.Y. Wang, A highly tunable stereoselective 211
dimerization of methyl ketone: efficient synthesis of E- and Z-1,4-enediones, 212
204
(d) J. Zanon, A. Klapars, S.L. Buchwald, Copper-catalyzed domino halide ex-
change-cyanation of aryl bromides, J. Am. Chem. Soc. 125 (2003) 2890–2891.
[4] (a) T. Sandmeyer, Ueberfu¨ hrung der drei Nitraniline in die Nitrobenzoe¨sa¨uren,
Ber. Dtsch. Chem. Ges. 18 (1885) 1492–1496;
207
(b) T. Sandmeyer, Ueber die Ersetzung der Amid-gruppe durch Chlor, Brom
und Cyan in den aromatischen Substanzen, Ber. Dtsch. Chem. Ges. 17 (1884)
2650–2653.
210
[5] (a) E. Choi, C. Lee, Y. Na, S. Chang, [RuCl2(p-cymene)]2 on carbon: an efficient,
selective, reusable, and environmentally versatile heterogeneous catalyst, Org.
Lett. 4 (2002) 2369–2371;
(b) K. Yamaguchi, H. Fujiwara, Y. Ogasawara, M. Kotani, N. Mizuno, Inside cover:
aerobic oxidation of alcohols at room temperature and atmospheric conditions
catalyzed by reusable gold nanoclusters stabilized by the benzene rings of
polystyrene derivatives, Angew. Chem. Int. Ed. 46 (2007) 3922–3925.
[6] M. Lamani, K. Prabhu, An efficient oxidation of primary azides catalyzed by copper
iodide: a convenient method for the synthesis of nitriles, Angew. Chem. Int. Ed. 49
(2010) 6622–6625.
Org. Lett. 15 (2013) 2148–2151.
[12] (a) S. Lang, J.A. Murphy, Azide rearrangements in electron-deficient systems, 214
Chem. Soc. Rev. 35 (2006) 146–156;
(b) M. Sprecher, D. Kost, The Schmidt reaction of dialkyl acylphosphonates, J. Am. 216
Chem. Soc. 116 (1994) 1016–1026;
213
215
217
(c) C.E. Katz, J. Aube, Unusual tethering effects in the Schmidt reaction of 218
hydroxyalkyl azides with ketones: cation-p and steric stabilization of a pseu- 219
doaxial phenyl group, J. Am. Chem. Soc. 125 (2003) 13948–13949;
220
(d) D.J. Gorin, N.R. Davis, F.D. Toste, Gold(I)-catalyzed intramolecular acetylenic 221
Schmidt reaction, J. Am. Chem. Soc. 127 (2005) 11260–11261;
222
[7] (a) W. Zhou, L. Zhang, N. Jiao, Direct transformation of methyl arenes to aryl
nitriles at room temperature, Angew. Chem. Int. Ed. 48 (2009) 7094–7097;
(b) C. Qin, N. Jiao, Iron-facilitated direct oxidative C–H transformation of allylar-
enes or alkenes to alkenyl nitriles, J. Am. Chem. Soc. 132 (2010) 15893–15895;
(c) W. Zhou, J. Xu, L. Zhang, N. Jiao, An efficient transformation from benzyl or
allyl halides to aryl and alkenyl nitriles, Org. Lett. 2010 (12) (2010) 2888–2891.
(e) L. Yao, J. Aube, Cation-p control of regiochemistry of intramolecular 223
Schmidt reactions en route to bridged bicyclic lactams, J. Am. Chem. Soc. 224
129 (2007) 2766–2767.
225
[13] J.P. Richard, T.L. Amyes, Y.G. Lee, V. Jagannadham, Demonstration of the chemical 226
competence of an iminodiazonium ion to serve as the reactive intermediate of a 227
Schmidt reaction, J. Am. Chem. Soc. 116 (1994) 10833–10834.
228
Please cite this article in press as: J.-Q. Ye, et al., A green and efficient access to aryl nitriles via an electrochemical anodic oxidation, Chin.