2642
A. R. Sardarian et al. / Tetrahedron Letters 48 (2007) 2639–2643
O
References and notes
O
O
P(OEt)2
1
. (a) Tennant, G. In Comprehensive Organic Chemistry;
Barton, D., Ollis, D. W., Sutherland, I. O., Eds.;
Pergamon Press: Oxford, 1979; Vol. 2, p 528; (b)
The Chemistry of Triple Bonded Functional Groups;
Patai, S., Rappoport, S., Eds.; Wiley: New York, 1983,
Part 1; (c) Moruoka, K.; Yamamoto, H. In Comprehen-
sive Organic Chemistry; Trost, B. M., Fleming, I.,
Winterfeld, E., Eds.; Pergamon Press: Oxford, 1991; Vol.
NOH
N
(
EtO) PCl
2
R
C N
toluene
reflux
R
H
R
H
Scheme 2.
6
, p 381.
para-, and meta-positions, entries 1–7 and 14) in less
than one hour, except for 2-chlorobenzaldoxime (entry
2
. Moruoka, K.; Yamamoto, H. In Comprehensive Organic
Chemistry; Trost, B. M., Fleming, I., Winterfeld, E., Eds.;
Pergamon Press: Oxford, 1991; Vol. 6, p 763.
8
2
) which even after 3 h refluxing in toluene gave only a
7% yield of the desired product.
3. Smith, M. B.; March, J. Advanced Organic Chemistry,
5
1
th ed.; John Wiley & Sons: New York, 2001; p
415.
Pyridine-4-carbaldoxime did not undergo dehydration
under the same conditions. When triethylamine was
added to the reaction mixture to neutralize the pro-
duced hydrochloric acid from the reaction of the
oxime with diethyl chlorophosphate, dehydration
occurred but the yield of the reaction was only 37%
after 4 h. Further addition of triethylamine did not
increase the yield but when the initial reaction mixture,
including the same equivalent of the oxime, diethyl
chlorophosphate, and triethylamine, was heated at
4
5
. Gawly, R. E. Org. React. 1988, 35, 1.
. (a) Li, D.; Shi, F.; Guo, S.; Deng, Y. Tetrahedron Lett.
2
005, 46, 671; (b) Kira, M. A.; Shaker, Y. M. Egypt.
J. Chem. 1973, 6, 551.
. Wang, B.; Gu, Y.; Luo, C.; Yang, T.; Yang, L.; Suo, J.
Tetrahedron Lett. 2004, 45, 3369.
7. De Luca, L.; Giacomelli, G.; Porcheddu, A. J. Org. Chem.
2002, 67, 6272.
8. Chandrasekhar, S.; Gopalaiah, K. Tetrahedron Lett. 2003,
6
4
4, 755.
. Chandrasekhar, S.; Gopalaiah, K. Tetrahedron Lett. 2002,
3, 2455.
9
1
60–165 °C, all of the oxime was consumed and the
4
corresponding nitrile was obtained in 94% yield. Pyr-
role-2-carbaldoxime (entry 11), which is a weaker base
than pyridine-4-carbaldoxime, was dehydrated quanti-
tatively to the corresponding nitrile after five minutes
in boiling toluene without using triethylamine. Poly-
nuclear aromatic aldoximes (entries 9, 12, and 13) were
converted easily and rapidly to the desired nitriles in
excellent yields.
1
1
0. Izumi, Y. Chem. Lett. 1990, 2171.
1. Antikumar, S.; Chandrasekhar, S. Tetrahedron Lett. 2000,
4
1, 5427.
1
2. (a) Peng, J.; Deng, Y. Tetrahedron Lett. 2001, 42, 403; (b)
Ren, R. X.; Zueva, L. D.; Ou, W. Tetrahedron Lett. 2001,
42, 8441; (c) Gui, J.; Deng, Y.; Hu, Z.; Sun, Z. Tetra-
hedron Lett. 2004, 45, 2681.
13. (a) Ikushima, Y.; Hatakeda, K.; Sato, O.; Yokoyama, T.;
Arai, M. J. Am. Chem. Soc. 2000, 122, 1908; (b) Sato, O.;
Ikushima, Y.; Yokoyama, T. J. Org. Chem. 1998, 63,
In conclusion, a simple and efficient technique for direct
conversion of ketoximes and aldoximes via Beckmann
rearrangement and dehydration to the corresponding
amides and nitriles, respectively, has been presented
which has advantages over the previously reported
methods.
9
100; (c) Boero, M.; Ikeshoji, T.; Liew, C. C.; Terakura,
K.; Parrinello, M. J. Am. Chem. Soc. 2004, 126, 6280; (d)
Ikushima, Y.; Sato, O.; Sato, M.; Hatakeda, K.; Arai, M.
Chem. Eng. Sci. 2003, 58, 935.
1
4. (a) Konwar, D.; Boruah, R. C.; Sandhu, J. S. Tetra-
hedron Lett. 1990, 31, 1063; (b) Kato, Y.; Ooi, R.; Asano,
Y. J. Mol. Cat. B: Enzym. 1999, 6, 249; (c) Lee, K.;
Han, S.-B.; Yoo, E.-M.; Chung, S.-R.; Oh, H.;
Hong, S. Synth. Commun. 2004, 34, 1775; (d) Venkat
Narsaiah, A.; Nagaiah, K. Adv. Synth. Cat. 2004,
General procedure: For each reaction, the oxime
(
5 mmol) and toluene (1 ml) were charged into a 50 ml
two necked round-bottom flask equipped with a mag-
netic stirrer and condenser. The reaction was heated to
reflux and diethyl chlorophosphate (5 mmol) was added
to the mixture. The reaction was heated for 20–120
minutes and then cooled to room temperature. The
crude mixture was neutralized with 10 ml of an aqueous
solution of sodium hydroxide (5%) and then extracted
with diethyl ether (10 ml). Drying the ethereal layer
over anhydrous sodium sulfate and then filtration and
evaporation of the solvent gave the crude product,
which was purified by short column chromatography
over silica gel using n-hexane and ethyl acetate (9:1–
3
46, 1271; (e) Heravi, M. M.; Khadijeh, B.;
Hekmat Shoar, R.; Oskooie, H. A. J. Chem. Res. 2005,
90.
5
1
5. (a) Sosnovsky, G.; Krogh, J. A. Synthesis 1978, 703; (b)
Sacdnya, A. Synthesis 1983, 748; (c) Molina, P.; Alajarian,
M.; Vilaploma, M. J. Synthesis 1982, 1016.
6. Ho, T. L.; Wong, C. M. Synth. Commun. 1975, 5,
423.
17. Dulcere, J. P. Tetrahedron Lett. 1981, 22, 1599.
18. (a) Mai, K.; Patia, G. Synthesis 1986, 1037; (b) Narayana
Rao, M.; Kumar, P.; Garyah, K. Org. Prep. Proced. Int.
1
1
989, 21, 230.
1
9. (a) Katritzky, A. R.; Zhang, G. F.; Fan, W. G. Org. Prep.
Proced. Int. 1993, 25, 315; (b) Olah, G. A.; Narang, S. C.;
Garcia-Luna, A. Synthesis 1980, 659.
5
:5) as eluent.
2
0. CRC Handbook of Chemistry and Physics, 87th ed.; Lide,
D. R., Ed.; CRC Press, 2006.
Acknowledgment
2
1. Registry numbers of the amide products: N-phenyl-
acetamide: 103-84-4, N-p-tolylacetamide: 103-89-9,
N-phenylbenzamide: 93-98-1, piperidin-2-one: 675-20-7,
We gratefully acknowledge the support of this work by
Shiraz University research council.