10.1002/chem.201604762
Chemistry - A European Journal
COMMUNICATION
99% alcohol yield), as shown in Table S8. These observations
suggest that the catalytic system developed in this effort is
applicable to bio-relevant carboxylic acid hydrogenation
reactions.
Catal. A Gen. 1999, 189, 243–250; g) K. Tahara, JP 11199530, 1999;
h) Y. Hara, K. Endou, Appl. Catal. A Gen. 2003, 239, 181–195; i) H. G.
Manyar, C. Paun, R. Pilus, D. W. Rooney, J. M. Thompson, C.
Hardacre, Chem. Commun. 2010, 46, 6279–6281; j) L. Chen, Y. Li, X.
Zhang, Q. Zhang, T. Wang, L. Ma, Appl. Catal. A Gen. 2014, 478, 117–
128; k) L. Sandbrink, E. Klindtworth, H.-U. Islam, A. M. Beale, R.
Palkovits, ACS Catal. 2015, 677–680.
In summary, we developed a heterogeneous catalytic system
that promotes selective alcohol forming hydrogenation reactions
of carboxylic acids under mild conditions without the need for
additives. The Re/TiO2 catalyst, which is readily prepared by
using a facile impregnation method, could be utilized for
selective hydrogenation of carboxylic acids that contain aromatic
groups. DFT calculations suggest that the high selectivity for
alcohol formation of the Re-based catalyst is originated from
high affinity of Re with –COOH group over benzene ring. This
finding would be a design guide to develop better catalysts for
this process. Importantly, the catalyst was easily recyclable as a
heterogeneous catalyst. In view of the importance of the process
in both organic synthesis and industrial bulk chemical production,
the new method for carboxylic acid hydrogenation should find
wide utility and the findings should stimulate further studies
targeted at the design of catalysts for selective hydrogenation
reactions.
[6]
a) A. Primo, P. Concepcio, A. Corma, Chem. Commun. 2011, 47,
3613–3615; b) Y. Takeda, Y. Nakagawa, K. Tomishige, Catal. Sci.
Technol. 2012, 2, 2221–2223; c) M. Li, G. Li, N. Li, A. Wang, W. Dong,
X. Wang, Y. Cong, Chem. Commun. 2014, 50, 1414–1416; d) Z. Liu, B.
A. Tennant, J. L. Stavinoha, A. D. Messina, N. G. McMillan, US
20140121400, 2014; e) K. Kandel, U. Chaudhary, N. C. Nelson, I. I.
Slowing, ACS Catal. 2015, 5, 6719–6723; f) B. Rozmysłowicz, A. Kirilin,
A. Aho, H. Manyar, C. Hardacre, J. Wärnå, T. Salmi, D. Y. Murzin, J.
Catal. 2015, 328, 197–207.
[7]
a) K. Tahara, E. Nagahara, Y. Itoi, S. Nishiyama, S. Tsuruya, M. Masai,
Appl. Catal. A Gen. 1997, 154, 75–86; b) Z. Lv, Y. Song, Z. Zhu, J. Xie,
S. Guo, CN 101096333, 2006
[8]
[9]
Y. Ni, P.-L. Hagedoorn, J.-H. Xu, I. W. C. E. Arends, F. Hollmann,
Chem. Commun. 2012, 48, 2056–2058.
a) T. Vom Stein, M. Meuresch, D. Limper, M. Schmitz, M. Holscher, J.
Coetzee, D. J. Cole-Hamilton, J. Klankermayer, W. Leitner, J. Am.
Chem. Soc. 2014, 136, 13217–13225; b) X. Cui, Y. Li, C. Topf, K.
Junge, M. Beller, Angew. Chemie-Int. Ed. 2015, 54, 10596–10599; c) M.
Naruto, S. Saito, Nat. Commun. 2015, 6, 8140; d) S. Saito, R. Noyori, S.
Agrawal, JP 2015-124156, 2015; e) T. J. Korstanje, J. Ivar van der
Vlugt, C. J. Elsevier, B. de Bruin, Science 2015, 350, 298–302.
Acknowledgements
This work was supported by KAKENHI Grant numbers
JP16H06595, JP26289299, JP24109014, JP15K13710 and
JP15K05431 from Japan Society for the Promotion of Science
(JSPS), the Ministry of Education, Culture, Sports, Science and
Technology of Japan (MEXT) Projects of “Integrated Research
on Chemical Synthesis” and “Elements Strategy Initiative to
Form Core Research Center” and JST-CREST “Innovative
Catalysts”. TEM, STEM-EDX and ICP-AES analyses were
carried out at the OPEN FACILITY, Hokkaido University.
[10] S. Furukawa, K. Takahashi, T. Komatsu, Chem. Sci. 2016, 7, 4476-
4484.
[11] a) N. Ota, M. Tamura, Y. Nakagawa, K. Okumura, K. Tomishige,
Angew. Chemie-Int. Ed. 2014, 2, 1897–1900; b) S. Lwin, Y. Li, A. I.
Frenkel, I. E. Wachs, ACS Catal. 2015, 5, 6807–6814; c) I. T.
Ghampson, C. Sepulveda, R. Garcia, J. L. G. Fierro, N. Escalona, Catal.
Sci. Technol. 2016, 6, 4356-4369.
[12] a) M. Chia, Y. J. Pag, D. Hibbitts, Q. Tan, H. N. Pham, A. K. Datye, M.
Neurock, R. J. Davis, J. A. Dumesic, J. Am. Chem. Soc. 2011, 133,
12675–12689; b) B. K. Ly, B. Tapin, M. Aouine, P. Delichere, F. Epron,
ChemCatChem 2015, 7, 2161–2178.
Keywords: Hydrogenation of carboxylic acid • Alcohol
synthesis • Heterogeneous catalysis • Rhenium
[13] a) H. T. Teunissen, C. J. Elsevier, Chem. Commun. 1998, 3, 1367–
1368; b) K. Nomura, H. Ogura, Y. Imanishi, J. Mol. Catal. A Chem.
[1]
a) J. E. Carnahan, T. A. Ford, W. F. Gresham, W. E. Grigsby, G. F.
Hager, J. Am. Chem. Soc. 1955, 77, 3766–3768; b) J. Magano, J. R.
Dunetz, Org. Process Res. Dev. 2012, 16, 1156–1184; c) J. Pritchard,
G. a. Filonenko, R. van Putten, E. J. M. Hensen, E. A. Pidko, Chem.
Soc. Rev. 2015, 44, 3808–3833;d) C. Gunanathan, D. Milstein, Chem.
Rev. 2014, 114, 12024–12087.
2001, 166, 345–349; c)
Wyss, Angew. Chemie
L. A. Saudan, C. M. Saudan, C. Debieux, P.
Int. Ed. 2007, 46, 7473–7476; d) S.
-
Chakraborty, H. Dai, P. Bhattacharya, T. Neil, M. S. Gibson, J. A.
Krause, H. Guan, N. T. Fairweather, J. Am. Chem. Soc. 2014, 136,
7869–7872; e) G. A. Filonenko, M. J. B. Aguila, E. N. Schulpen, R. van
Putten, J. Wiecko, C. Müller, L. Lefort, E. J. M. Hensen, E. A. Pidko, J.
Am. Chem. Soc. 2015, 137, 7620–7623; f) O. Ogata, Y. Nakayama, H.
Nara, M. Fujiwhara, Y. Kayaki, Org. Lett. 2016, 18, 3894–3897.
[2]
[3]
a) A. B. Burg, H. I. Schlesinger, J. Am. Chem. Soc. 1937, 59, 780–787;
b) W. G. Brown, Org. React. 1952, 6, 469–509; c) H. C. Brown, S.
Krishnamurthy, Tetrahedron 1979, 35, 567–607; d) J. Seyden-Penne,
Reductions by the Alumino- and Borohydrides in Organic Synthesis,
2nd ed.; Wiley: New York: 1997.
[14] a) M. Ito, T. Ootsuka, R. Watari, A. Shiibashi, A. Himizu, T. Ikariya, J.
Am. Chem. Soc. 2011, 133, 4240–4242; b)
T. Miura, I. E. Held, S.
a) H. S. Broadbent, G. C. Campbell, W. J. Bartley, J. H. Johnson, J.
Org. Chem. 1959, 24, 1847–1854; b) M. Toba, S. Tanaka, S. Niwa,
Appl. Catal.A 1999, 189, 243–250; c) F. M. A Geilen, B. Engendahl, M.
H, W. Leitner, J. Am. Chem. Soc. 2011, 133, 14349–14358; d) P. A.
Dub, T. Ikariya, ACS Catal. 2012, 2, 1718–1741; e) T. P. Brewster, A. J.
M. Miller, D. M. Heinekey, K. I. Goldberg, J. Am. Chem. Soc. 2013, 135,
16022–16025.
Oishi, M. Naruto, S. Saito, Tetrahedron Lett. 2013, 54, 2674–2678; c) Y.
Kita, T. Higuchi, K. Mashima, Chem. Commun. 2014, 50, 11211–
11213; d) M.-L. Yuan, J.-H. Xie, S.-F. Zhu, Q.-L. Zhou, ACS Catal.
2016, 6, 3665–3669.
[15] a) M. J. Mendes, O. A. A. Santos, E. Jordão, A. M. Silva, Appl. Catal. A
Gen. 2001, 217, 253–262; b) X. She, H. M. Brown, X. Zhang, B. K.
Ahring, Y. Wang, ChemSusChem 2011, 4, 1071–1073; c) T. Mizugaki,
Y. Nagatsu, K. Togo, Z. Maeno, T. Mitsudome, K. Jitsukawa, K.
Kaneda, Green Chem. 2015, 17, 5136–5139; d) Y. Takeda, M. Tamura,
Y. Nakagawa, K. Okumura, K. Tomishige, ACS Catal. 2015, 5, 7034–
7047; e) L. Sandbrink, E. Klindtworth, H.-U. Islam, A. M. Beale, R.
Palkovits, ACS Catal. 2015, 677–680.
[4]
[5]
D. He, N. Wakasa, T. Fuchikami, Tetrahedron lett. 1995, 36, 1059–
1062.
a) B. C. Trivedi, US4104478, 1978; b) B. C. Trivedi, D. Grote, T. O.
Mason, J. Am. Oil Chem. Soc. 1981, 58, 17–20; c) K. Yoshino, Y.
Kajiwara, N. Takaishi, Y. Inamoto, J. Tsuji, J. Am. Oil Chem. Soc. 1990,
67, 21–24; d) R. Dostalek, R. Fischer, T. Krug, A. Paul, R. Pinkos, F.
Stein, DE 1997156171, 1995; e) A. Salvini, P. Frediani, M. Bianchi, F.
Piacenti, L. Pistolesi, L. Rosi, J. Organomet. Chem. 1999, 582, 218–
228; f) M. Toba, S. Tanaka, S. Niwa, F. Mizukami, Z. Koppány, Appl.
[16] a) S. Werkmeister, K. Junge, M. Beller, Org. Process Res. Dev. 2014,
18, 289−302; b) A. Suknev, V. Zaikovskii, V. Kaichev, E. Paukshtis, E.
Sadovskaya, B. Bal’Zhinimaev, J. Energy Chem. 2015, 24, 646–654.
This article is protected by copyright. All rights reserved.