H. Naeimi et al.
[4] L. Pelle, T. Jason, W. Bernard, W. Jacob, Tetrahedron 2001, 57, 9225–9283.
[5] S. J. Tu, Q. H. Wei, H. R. Ma, D. Q. Shi, Y. Gao, G. Y. Cui, Synth. Commun.
2001, 31, 2657–2661.
[6] R. S. Varma, Green Chem. 1999, 1, 43–55.
[7] Y. Gu, Green Chem. 2012, 14, 2091–2128.
[8] B. Jiang, T. Rajale, W. Wever, S.-J. Tu, G. Li, Chem. Asian J. 2010, 5,
2318–2335.
[9] J. D. Sunderhaus, S. F. Martin, Chem. Eur. J. 2009, 15, 1300–1308.
[10] R. Huisgen, Pure Appl. Chem. 1989, 61, 613–628.
[11] R. Huisgen, G. Szeimies, L. Moebius, Chem. Ber. 1965, 98, 4014–4021.
[12] V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem.
Int. Ed. 2002, 41, 2596–2599.
[13] R. Huisgen, Angew. Chem. Int. Ed. 1963, 2, 565–568.
[14] F. Alonso, Y. Moglie, G. Radivoy, M. Yus, Adv. Synth. Catal. 2010, 352,
3208–3214.
Scheme 3. Formation of bis-triazole (i) in the presence of Cu@PMO NCs as
catalyst.
Table 5. Test of recyclability of catalyst using synthesis of β-hydroxy-
1,2,3-triazole in water using Cu@PMO NC catalyst
[15] W. S. Brotherton, R. J. Clark, L. Zhu, J. Org. Chem. 2012, 77, 6443–6455.
[16] A. Megia-Fernandez, M. Ortega-Muñoz, J. Lopez-Jaramillo,
F. Hernandez-Mateo, F. Santoyo-Gonzalez, Adv. Synth. Catal. 2010,
352, 3306–3320.
[17] G. Molteni, C. L. Bianchi, G. Marinoni, N. Santod, A. Ponti, New J. Chem.
2006, 30, 1137–1139.
[18] L. D. Pachón, J. H. V. M. And, G. Rothenberg, Adv. Synth. Catal. 2005, 347,
811–815.
[19] C. Radatz, S. Soares, L. Do, A. Vieira, E. Fernando, D. Alves, D. Russowsky,
P. H. Schneider, New J. Chem. 2014, 38, 1410–1417.
[20] T. Boningari, A. Olmos, B. M. Reddy, J. Sommer, P. Pale, Eur. J. Org. Chem.
2010, 2010, 6338–6347.
Run
Time (min)
Power (W)
Yield (%)
1st
7
7
7
7
7
7
277
277
277
277
277
277
97.54
97.54
95.50
95.50
95.50
93.40
2nd
3rd
4rd
5th
6th
[21] H. Naeimi, V. Nejadshafiee, New J. Chem. 2014, 38, 5429–5435.
[22] F. Alonso, Y. Moglie, G. Radivoy, M. Yus, J. Org. Chem. 2011, 76,
8394–8405.
[23] H. Sharghi, M. H. Beyzavi, A. Safavi, M. M. Doroodmand, R. Khalifeh, Adv.
Synth. Catal. 2009, 351, 2391–2410.
[24] H. Naeimi, M. Moradian, Appl. Organometal. Chem. 2013, 27, 300–306.
[25] K. S. B. Cavalcante, M. N. C. Penha, K. K. M. Mendonça, H. C. Louzeiro,
A. C. S. Vasconcelos, A. P. Maciel, A. G. de Souza, F. C. Silva, Fuel 2010,
89, 1172–1176.
[26] J. S. Yadav, B. V. S. Reddy, G. M. Reddy, D. N. Chary, Tetrahedron Lett.
2007, 48, 8773–8776.
power, has advantages because it involves less costly, nontoxic re-
agents, green reaction conditions, short times and high conversions
and uses an easily recyclable catalyst that shows no leaching and
generates high yields of products. Furthermore, the availability
and nontoxicity of copper as well as the mild synthetic and
reaction conditions involved make the synthetic process appealing
from an environmental point of view.
[27] G. Leofanti, M. Padovan, G. Tozzola, B. Venturelli, Catal. Today 1998, 41,
207–219.
Acknowledgement
The authors are grateful to the University of Kashan for supporting
this work through grant no. 159148/44.
[28] Y. Li, G. K. Skouroumounis, G. M. Elsey, D. K. Taylor, Food Chem. 2011,
129, 570–576.
Supporting Information
References
Additional supporting information may be found in the online ver-
sion of this article at the publisher’s web site.
[1] M. Kidwai, Pure Appl. Chem. 2001, 73, 147–151.
[2] R. S. Varma, Pure Appl. Chem. 2001, 73, 193–198.
[3] A. de la Hoz, A. Loupy (Eds), Microwaves in Organic Synthesis, Wiley-VCH,
Weinheim, 2012.
wileyonlinelibrary.com/journal/aoc
Copyright © 2015 John Wiley & Sons, Ltd.
Appl. Organometal. Chem. (2015)