10.1002/chem.201604991
Chemistry - A European Journal
COMMUNICATION
This research was supported by the Israel Science Foundation, the
MINERVA Foundation and the Kimmel Center for molecular
design. D. M. holds the Israel Matz Professorial Chair of Organic
Chemistry. N. A. E.-J. thanks Mr. Armando Jinich for a
postdoctoral fellowship.
Keywords: homogeneous catalysis · pincer complexes ·
Scheme 3. Reversible activation of H2 by 2 at room temperature (1 bar H2)
through metal-ligand cooperation.
manganese · ester · alcohol
[1] a) P. G. Andersson, I. J. Munslo, Modern Reductions Methods,
Wiley, New York, 2008. b) L. A. Saudan, Hydrogenation of Esters.
In Sustainable Catalysis: Challenges and Practices for the
Pharmaceuticals and Fine Chemical Industries (Eds.: P. J. Dunn, K.
K. Hii, M. J. Krische, M. T. Williams) Wiley, Hoboken, NJ, 2013,
chapter 2. c) Handbook of Homogeneous Hydrogenation (Eds.: J. G.
Vries, C. J. Elsevier), Wiley-VCH, Weinheim, 2007.
[2] J. Seyden-Penne, Reductions by the Alumino- and Borohydrides in
Organic Synthesis; VCH Publishers: New York, 1991.
[3] a) R. D. Rieke, D. S. Thakur, B. D. Roberts, G. T. White, J. Am. Oil
Chem. Soc. 1997, 74, 333. b) Y. Pouilloux, F. Autin, J. Barrault,
Catal. Today 2000, 63, 87.
The syn orientation of the N-H and Mn-H bonds in 3 is
determined by a NOE study. Upon selective irradiation of the
hydride resonance at -1.71 ppm, the NOE difference spectrum
gives NOE enhancement for the resonance at 3.09 ppm (s), which
corresponds to the NH group and also for the resonance at 1.42
3
t
ppm (d, JHP = 12 Hz), due to the BuP group which points in the
same direction as the Mn-H (Figure 2, see SI). Upon selective
irradiation of the hydride resonance at -1.34 ppm, the NOE
difference spectrum only shows NOE enhancement for the
3
resonances at 1.37 ppm (d, JHP = 12 Hz) and 0.94 ppm (s), which
t
t
correspond to the BuP and BuN groups, in agreement with the
[4] a) E. Fogler, J. A. Garg, P. Hu, G. Leitus, L. J. W. Shimon, D.
Milstein, Chem. Eur. J. 2014, 20, 15727. b) E. Balaraman, E. Fogler,
D. Milstein, Chem. Commun. 2012, 48, 1111. c) E. Fogler, E.
Balaraman, Y. Ben-David, G. Leitus, L. J. W. Shimon, D. Milstein,
Organometallics 2011, 30, 3826. d) J. Zhang, G. Leitus, Y. Ben-
David, D. Milstein, Angew. Chem. Int. Ed. 2006, 45, 1113; Angew.
Chem. 2006, 118, 1131. e) J. Zhang, G. Leitus, Y. Ben-David, D.
Milstein, J. Am. Chem. Soc. 2005, 127, 10840. f) W. Kuriyama, T.
Matsumoto, O. Ogata, Y. Ino, K. Aoki, S. Tanaka, K. Ishida, T.
Kobayashi, N. Sayo, T. Saito, Org. Process Res. Dev. 2012, 16, 166.
g) L. A. Saudan, C. M. Saudan, C. Debieux, P. Wyss, Angew. Chem.
Int. Ed. 2007, 46, 7473; Angew. Chem. 2007, 119, 7617. h) D.
Spasyuk, S. Smith, D. G. Gusev, Angew. Chem. Int. Ed. 2012, 51,
2772; Angew. Chem. 2012, 124, 2826. i) D. Spasyuk, S. Smith, D. G.
Gusev, Angew. Chem. Int. Ed. 2013, 52, 2538; Angew. Chem. 2013,
125, 2589. j) H. T. Teunissen, C. J. Elsevier, Chem. Commun. 1997,
667. k) H. T. Teunissen, Chem. Commun. 1998, 1367. l) M. C. Van
Engelen, H. T. Teunissen, J. G. de Vries, C. J. Elsevier, J. Mol. Catal.
proposed anti orientation of the N-H and Mn-H bonds for 4 (Figure
2).
Figure 2. 1H NMR chemical shifts of the NOE correlations observed under
selective irradiation of the hydride resonance for 3 and 4.
We believe that complex 2, and the coordinatively saturated
syn-[Mn(PNNH)(H)(CO)2] complex 3, formed in situ under the
catalytic reaction conditions, are actual intermediates in the ester
hydrogenation process. Hence it is quite likely that an outer-sphere
mechanism, involving hydride and proton transfer from the Mn-H
and M-N-H moieties, is operative.
A
2003, 206, 185. m) S. Takebayashi, S. H. Bergens,
Organometallics 2009, 28, 2349. n) W. W. N. O, A. J. Lough, R.H.
Morris, Chem. Commun. 2010, 46, 8240. o) Y. Sun, C. Koehler, R.
Tan, V. T. Annibale, D. Song, Chem. Commun. 2011, 47, 8349. p) W.
W. N. O; R. H. Morris, ACS Catal 2013, 3, 32. q) M. Ito, T. Otsuka,
R. Watari, A. Shiibashi, A. Himizu, T. Ikariya, J. Am. Chem. Soc.
2011, 133, 4240; r) T. Touge, T. Hakamata, H. Nara, T. Kobayashi,
N. Sayo, T. Saito, Y. Kayaki, T. Ikariya, J. Am. Chem. Soc. 2011,
133, 14960. s) P. A. Dub, T. Ikariya, ACS Catal. 2012, 2, 1718.
[5] D. Spasyuk, C. Vicent, D. G. Gusev, J. Am. Chem. Soc. 2015, 137,
3743.
In summary, the first example of ester hydrogenation
catalyzed by a complex based on earth-abundant manganese is
reported. This environmentally benign reaction proceeds under
o
mild conditions (100 C, 20 bar) and is of broad scope. In the
reported examples the reaction was selective for ester groups, C=C
and CN groups not being affected. The actual catalytically active
complex, the amido complex 2, was prepared by deprotonation of 1
and shown to efficiently catalyze the reaction in absence of added
base. No deprotonation of the benzylic position was observed. H2
activation takes place by metal-ligand cooperation (MLC), in
which the manganese metal center and the pincer ligand participate
in H2 activation via Mn-NR2 HMn-NHR2 equilibrium, leading to
coordinatively saturated syn and anti isomers. Further experimental
and theoretical mechanistic studies are underway.
[6] a) A. Liu, L. Ackermann, ACS Cat. 2016, 6, 3743. b) I. Bauer, H.-J.
Knölker, Chem. Rev. 2015, 115, 3170. b) B. Su, Z.-C. Cao, Z.-J. Shi,
Acc. Chem. Res. 2015, 48, 886.
[7] a) R. Noyori, S. Hashiguchi, Acc. Chem. Res. 1997, 30, 97. b) R.
Noyori, T. Ohkuma, Angew. Chem. Int. Ed. 2001, 40, 40; Angew.
Chem. 2001, 113, 40. c) J. R. Khusnutdinova, D. Milstein, Angew.
Chem. Int. Ed. 2015, 54, 12236; Angew. Chem. 2015, 127, 12406. d)
T. Zell, D. Milstein, Acc. Chem. Res. 2015, 48, 1979. e) D. Milstein,
Top. Cat. 2010, 53, 915. f) C. Gunanathan, D. Milstein, Science 2013,
341, 1229712. g) C. Gunanathan, D. Milstein, Top. Organomet.
Chem. 2011, 37, 55.
[8] a) T. Zell, Y. Ben-David, D. Milstein, Angew. Chem. Int. Ed. 2014,
53, 4685; Angew. Chem. 2014, 126, 4773. b) S. Werkmeister, K.
Junge, B. Wendt, E. Alberico, H. Jiao, W. Baumann, H. Junge, F.
Acknowledgements
This article is protected by copyright. All rights reserved.