Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
Angew. Chem. Int. Ed., 2013, 52, 2538–2542. (g) G. A.
gives high turnover numbers in ketone transfer
hydrogenation,8 but we are not aware of ester pressure
hydrogenations with any metal centre, using only pure N,N
ligands. In summary, we have developed the first example of a
manganese-catalysed reaction for the transfer hydrogenation
of esters. The methodology operates using only 1 mol% of a
sustainable metal catalyst to effect reduction.
Filonenko, M. J. B. Aguila, E. N. SchulpDeOn,I:R1.0.v1a0n39VPi/eDuw0tAtCertCinc0l,e2JO5.9nl8inDe
Wiecko, C. Müller, L. Lefort, E. J. M. Hensen and E. A. Pidko,
J. Am. Chem. Soc., 2015, 137, 7620–7623.
2
Fe- (a) S. Chakraborty, H. Dai, P. Bhattacharya, N. T.
Fairweather, M. S. Gibson, J. A. Krause and H. Guan, J. Am.
Chem. Soc., 2014, 136, 7869–7872. (b) T. Zell, Y. Ben-David
and D. Milstein, Angew. Chem. Int. Ed., 2014, 53, 4685–4689.
(c) S. Werkmeister, K. Junge, B. Wendt, E. Alberico, H. Jiao,
W. Baumann, H. Junge, F. Gallou and M. Beller, Angew.
Chem. Int. Ed., 2014, 53, 8722–8726. (d) S. Elangovan, B.
Wendt, C. Topf, S. Bachmann, M. Scalone, A. Spannenberg,
H. Jiao, W. Baumann, K. Junge and M. Beller, Adv. Synth.
Catal., 2016, 358, 820–825. Mn- (e) S. Elangovan, M. Garbe,
H. Jiao, A. Spannenberg, K. Junge and M. Beller, Angew.
Chem. Int. Ed., 2016, 55, 15364–15368. (f) M. B. Widegren,
G. J. Harkness, A. M. Z. Slawin, D. B. Cordes and M. L. Clarke,
Angew. Chem. Int. Ed., 2017, 56, 5825–5828. (g) R. vanꢀ
Putten, E. A. Uslamin, M. Garbe, C. Liu, A. Gonzalez-de-
Castro, M. Lutz, K. Junge, E. J. M. Hensen, M. Beller, L. Lefort
and E. A. Pidko, Angew. Chem. Int. Ed., 2017, 56, 7531–7534.
(h) N. A. Espinosa-Jalapa, A. Nerush, L. J. W. Shimon, G.
Leitus, L. Avram, Y. Ben-David and D. Milstein, Chem. Eur. J.,
2017, 23, 5934–5938. (reviews on Mn-catalysed reduction)
(i) F. Kallmeier and R. Kempe, Angew. Chem. Int. Ed., 2018,
57, 46–60. (j) B. Maji and M. K. Barman, Synthesis, 2017, 49,
3377-3393
O
2 (1 mol%)
tBuOK (20 mol%)
OH
OMe
EtOH, 22 h,
100 oC, Dark
Br
Br
8t
9t
O
O
OMe
OEt
OH
Br
Br
Br
8t (Trace)
8t' (7%)
9t (79%)
O
O
O
O
Br
Br
Br
9t'' (3%)
9t' (2%)
3
4
M. B. Widegren and M. L. Clarke, Org. Lett., 2018, 20, 2654–
2658.
OH
O
-OEt
(a) S. Gladiali and E. Alberico, Chem. Soc. Rev. 2006, 35, 226-
236. (b) C. Wang, X. Wu and J. Xiao, Chem. Asian J., 2008, 3,
1750–1770. (c) J. Ito and H. Nishiyama, Tet. Lett., 2014, 55,
3133–3146. (d) P.-G. Echeverria, T. Ayad, P. Phansavath and
V. Ratovelomanana-Vidal, Synthesis, 2016, 48, 2523–2539.
(e) D. Wang and D. Astruc, Chem. Rev., 2015, 115, 6621–
6686. (f) R. Noyori and S. Hashiguchi, Acc. Chem. Res. 1997,
30, 97-102
(a) S.-H. Lee and G. I. Nikonov, ChemCatChem, 2015, 7, 107–
113. (b) A. Dubey and E. Khaskin, ACS Catal., 2016, 6, 3998–
4002. (c) I. D. Alshakova, B. Gabidullin and G. I. Nikonov,
ChemCatChem, 2018, 10, 4860–4869. (d) R. A. Farrar-Tobar,
B. Wozniak, A. Savini, S. Hinze, S. Tin and J. G. deꢀVries,
Angew. Chem. Int. Ed., 2019, 58, 1129–1133.
EtOAc
EtOH
OEt
OEt
OEt
R
R
OEt
[Mn]
OEt
H
H
O
O
O
[Mn]
[Mn]
[Mn]
[Mn]
[Mn]
[Mn]
[Mn] refers
to Mn complex,
see ESI.
O
OH
O
OH
5
6
-OEt
R
OEt
R
OEt
R
R
Scheme 2 Top: Species found at end of Me ester reduction
determined by 1H NMR using 1,4-dimethoxybenzene as internal
standard- see ESI. Below: Mechanistic proposal for ester transfer
hydrogenation using 2 and EtOH.
D. R. Abernethy, A. J. DeStefano, T. L. Cecil, K. Zaidi, R. L.
Williams and USP Metal Impurities Advisory Panel, Pharm.
Res., 2010, 27, 750–755.
7
8
9
M. B. Widegren and M. L. Clarke, Catal. Sci. Technol., 2019, 9,
6047–6058.
A. Bruneau-Voisine, D. Wang, V. Dorcet, T. Roisnel, C. Darcel
and J.-B. Sortais, Org. Lett., 2017, 19, 3656–3659.
M. A. Sánchez, G. C. Torres, V. A. Mazzieri and C. L. Pieck, J.
Chem. Tech. & Biotech., 2017, 92, 27–42.
Notes and references
‡ We would like to thank the University of St Andrews, and the
EPSRC Centre for Doctoral Training in Critical Resource Catalysis
(CRITICAT) for financial support [Ph.D. studentship to CO; Grant
code: EP/L016419/1]. We thank Solvias for ongoing
collaboration and the gift of chemicals.
10 Ru- (a) T. vom Stein, M. Meuresch, D. Limper, M. Schmitz, M.
Hölscher, J. Coetzee, D. J. Cole-Hamilton, J. Klankermayer
and W. Leitner, J. Am. Chem. Soc., 2014, 136, 13217–13225.
(b) X. Cui, Y. Li, C. Topf, K. Junge and M. Beller, Angew. Chem.
Int. Ed., 2015, 54, 10596–10599. (c) M. Naruto and S. Saito,
Nature Commun., 2015, 6, 1–9. Co- (d) T. J. Korstanje, J. Ivar
van der Vlugt, C. J. Elsevier and B. de Bruin, Science, 2015,
350, 298–302.
11 B. Neises and W. Steglich, Angew. Chem. Int. Ed., 1978, 17,
522–524.
12 Y. Wang, L. Zhu, Z. Shao, G. Li, Y. Lan, and Q. Liu, J. Am.
Chem. Soc., 2019, 141, 17337-17349
§ Throughout this work, we have used single enantiomer
catalysts since we had large amounts of these available, but we
note ref. 7 shows, as one would expect, similar results using
either single enantiomer or racemic catalysts in pressure
hydrogenation.
1
(a)(Review): M. L. Clarke, Catal. Sci. Technol., 2012, 2, 2418–
2423. (b) (Review) S. Werkmeister, K. Junge and M. Beller,
Org. Process Res. Dev., 2014, 18, 289–302. (c) E. Fogler, E.
Balaraman, Y. Ben-David, G. Leitus, L. Shimon J. W. and D.
Milstein, Organometallics, 2011, 30, 3826–3833. (d) L. A.
Saudan, C. M. Saudan, C. Debieux and P. Wyss, Angew.
Chem. Int. Ed., 2007, 46, 7473–7476. (e) W. Kuriyama, T.
Matsumoto, O. Ogata, Y. Ino, K. Aoki, S. Tanaka, K. Ishida, T.
Kobayashi, N. Sayo and T. Saito, Org. Process Res. Dev., 2012,
16, 166–171. (f) D. Spasyuk, S. Smith and D. G. Gusev,
13 D.H. Nguyen, X. Trivelli, F. Capet, J-F. Paul, F. Dumeignil, and
R. M. Gauvin, ACS Catalysis, 2017, 7, 2022-2032.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins