Yadav et al.
599
were recorded using a Jeol AL 300 MHz spectrometer in
CDCl3 using TMS as the internal standard reference at the
Department of Chemistry, Banaras Hindu University, Vara-
nasi, India.
10.1139/v2012-034.
Acknowledgements
The financial support of CST, U.P., Lucknow, India,
through project No. CST/SERPD/ D-2895/2008 is thankfully
acknowledged. The academic support of Professor V.K. Ya-
dav, Department of Chemistry, Indian Institute of Technol-
ogy, Kanpur, India, in the determination of enantiomeric
excess, and Professor R. Gurunath, of the same department,
in GC–MS analysis is thankfully acknowledged.
13C NMR
The 13C NMR spectra of the biotransformation products
were recorded on a Jeol-ECX 500 Hz spectrophotometer in
CDCl3 using TMS as the internal standard reference at the
Department of Chemistry, Indian Institute of Technology,
Kanpur, India. The chemical shift values were reported in
ppm.
References
IR
(1) Theil, F. Chem. Rev. 1995, 95 (6), 2203. doi:10.1021/
cr00038a017.
(2) Nakamura, K.; Matsuda, T. J. Org. Chem. 1998, 63 (24), 8957.
The IR spectra of the biotransformation products were re-
corded on a Bruker IR-VERTEX Flash 70 spectrometer in
the range of 400–4000 cm–1 at the Department of Chemistry,
Indian Institute of Technology, Kanpur, India.
doi:10.1021/jo9812779.
(3) Borgas, K. B.; de Souza Borges, W.; Durán-Patrón, R.; Pupo,
M. T.; Bonato, P. S.; Collado, I. G. Tetrahedron Asymmetry
2009, 20, 385. doi:10.1016/j.tetasy.2009.02.009.
(4) Ou, L.; Xu, Y.; Ludwig, D.; Pan, J.; Xu, J. H. J. Org. Process
Res. Dev. 2008, 12 (2), 192. doi:10.1021/op700253t.
(5) Bisogno, F. R.; Lavandera, I.; Kroutil, W.; Gotor, V. J. Org.
Chem. 2009, 74 (4), 1730. doi:10.1021/jo802350f.
(6) Suginaka, K.; Hayashi, Y.; Yamamoto, Y. Tetrahedron
Asymmetry 1996, 7 (4), 1153. doi:10.1016/0957-4166(96)
00121-8.
(7) Ivanov, A. E.; Schneider, M. P. J. Mol. Catal. B: Enzym. 1997,
3 (6), 303. doi:10.1016/S1381-1177(97)00012-X.
(8) de los Ríos, A. P.; Hernández-Fernández, F. J.; Tomás-Alonso,
F.; Gómez, D.; Víllora, G. Can. J. Chem. Eng. 2010, 88, 442.
doi:10.1002/cjce.20285.
GC–MS
Products were analysed by GC–MS using an HP GC–MS
model No. 5975C-inert MSDS with triple axis detector using
helium gas (5 mL/min) as the mobile phase at the Depart-
ment of Chemistry, Indian Institute of Technology, Kanpur,
India.
Determination of ee
The ees were determined using a Chiralcel OD column
(4.6 mm × 250 mm) manufactured by Daicel Chiral Technol-
ogies Pvt. Ltd. (Japan) using a 90:10 (v/v) mixture of n-hexane
and isopropylalcohol as the eluent phase at a flow rate of
0.5 mL/min at the Department of Chemistry, Indian Insti-
tute of Technology, Kanpur, India.
(9) Berglund, P. Biomol. Eng. 2001, 18 (1), 13. doi:10.1016/
S1389-0344(01)00081-8.
(10) Chua, L. S.; Sarmidi, M. R. J. Mol. Catal. B: Enzym. 2004, 28
(2–3), 111. doi:10.1016/j.molcatb.2004.02.004.
(11) Lohse, O.; Spöndlin, C. Org. Process Res. Dev. 1997, 1 (3),
247. doi:10.1021/op9600264.
(12) Kamm, J. A.; Buttery, R. G.; Robinson, W. H. J. NewYork
Entomol. Soc. 1987, 95, 19.
(13) Faber, K. Biotransformation Inorganic Chemistry; 5th ed.,
Springer-Verlag: Berlin, 2004.
(14) Wu, X.; Xiao, J. J. Chem. Commun. (Camb.) 2007, 24 (24),
Results and discusion
The results of the identification of the biotransformation
products, (R)-1-phenylethanol and (R)-1-phenylpropanol, us-
ing the suspensions of fungal mycelia of the strains A. flavus
MTCC-1783 and A. flavus MTCC-1884 are given in the
Supplementary data. The fungal mycelia of A. flavus
MTCC-1783 converted ethylbenzene to (R)-1-phenylethanol
in 100% enantiomeric excess and propylbenzene to (R)-1-
phenylpropanol in 99% enantiomeric excess. The reaction
times were 24 h and no ethylbenzene and propylbenzene
were detected at the end of transformation reactions showing
that ethylbenzene and propylbenzene were fully transformed
to their corresponding biotransformation products. Methyl-
benzene was also transformed to benzylalcohol by these two
fungal strains showing that hydroxylations occur at benzylic
carbon centre. In typical scale up experiments as mentioned
in the materials and methods section (Biotransformation reac-
tions) 1.5 mL of ethylbenzene and 3.0 mL of propylbenzene
were fully converted to (R)-1-phenylethanol and (R)-1-phen-
ylpropanol, respectively, showing the feasibility of the
method on laboratory scale.
2449. doi:10.1039/b618340a.
(15) Holland, H. L.; Bergen, E. J.; Chenchaiah, P. C.; Khan, S. H.;
Munoz, B.; Ninniss, R. W.; Richards, D. Can. J. Chem. 1987,
65 (3), 502. doi:10.1139/v87-087.
(16) Filipovic, D.; Paulsen, M. D.; Loida, P. J.; Sligar, S. G.;
Ornstein, R. L. Biochem. Biophys. Res. Commun. 1992, 189
(1), 488. doi:10.1016/0006-291X(92)91584-D.
(17) Uzura, A.; Katsuragi, T.; Tani, Y. J. Biosci. Bioeng. 2001, 91,
217.
(18) Uzura, A.; Katsuragi, T.; Tani, Y. J. Biosci. Bioeng. 2001, 91,
580.
(19) Szaleniec, M.; Hagel, C.; Menke, M.; Nowak, P.; Witko, M.;
Heider, J. J. Biochemistry 2007, 46 (25), 7637. doi:10.1021/
bi700633c.
(20) Johnson, H. A.; Pelletier, D. A.; Spormann, A. M. J. Bacteriol.
2001, 183 (15), 4536. doi:10.1128/JB.183.15.4536-4542.2001.
Supplementary data
Supplementary data are available with the article through
Published by NRC Research Press