Full Paper
4-Chlorobenzyl Alcohol: Yield 39.4 mg, 92 %. 1H NMR (400 MHz,
Crystal Data for 8: C32H22Cl4Co2N10, Fw = 806.26, monoclinic,
CDCl3): δ = 7.29 (d, J = 8.4 Hz, 2 H), 7.22 (d, J = 8.4 Hz, 2 H), 4.56 P21/n, a = 9.5111(7) Å, b = 17.3587(8) Å, c = 10.4103(8) Å, ꢀ =
(s, 2 H), 2.82 (br., 1 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 139.1,
133.2, 128.5, 128.3, 64.2 ppm.
110.918(8)°, V = 1605.47(19) Å3, Z = 2, Dcalcd. = 1.668 Mg/m3,
F(000) = 812, crystal size: 0.20 × 0.15 × 0.10 mm, θ = 3.28–24.99°,
5831 reflections collected, 2799 reflections [R(int) = 0.0445], final R
indices [I > 2σ(I)]: R1 = 0.0633, wR2 = 0.1641, for all data R1 = 0.1023,
wR2 = 0.1899, goodness-of-fit on F2 = 1.026.
4-Bromobenzyl Alcohol: Yield 51.2 mg, 91 %. 1H NMR (400 MHz,
CDCl3): δ = 7.47 (d, J = 8.8 Hz, 2 H), 7.24 (d, J = 8.8 Hz, 2 H), 4.64
(s, 1 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 139.7, 131.6, 128.6,
121.4, 64.5 ppm.
Acknowledgments
We thank the Ministry of Science and Technology, Taiwan, for
financial support (NSC103-2113-M-002-002-MY3).
2-(Hydroxymethyl)pyridine: Yield 29.1 mg, 89 %. 1H NMR
(400 MHz, CDCl3): δ = 8.51 (d, J = 4.8 Hz, 1 H), 7.64–7.68 (m, 1 H),
7.27 (d, J = 8 Hz, 1 H), 7.15–7.19 (m, 1 H), 4.74 (s, 1 H), 3.95 (br., 1
H) ppm. 13C NMR (100 MHz, CDCl3): δ = 159.3, 148.4, 136.7, 122.3,
120.6, 64.2 ppm.
Keywords: Dimetallic complexes · Nickel · Ruthenium ·
Rhenium · Naphthyridine · Reduction
1
Benzene-1,2-dimethanol: Yield 35.2 mg, 85 %. H NMR (400 MHz,
CDCl3): δ = 7.26 (m, 4 H), 4.53 (s, 4 H), 4.42 (br., 2 H) ppm. 13C
NMR(100 MHz, CDCl3): δ = 139.0, 129.3, 128.2, 63.3 ppm.
[1] Recent reviews: a) M. Boiocchi, L. Fabbrizzi, Chem. Soc. Rev. 2014, 43,
1835–1847; b) J.-P. Launay, Coord. Chem. Rev. 2013, 257, 1544–1554; c)
Y. Sunatsuki, R. Kawamoto, K. Fujita, H. Maruyama, T. Suzuki, H. Ishida,
M. Kojima, S. Iijima, N. Matsumoto, Coord. Chem. Rev. 2010, 254, 1871–
1881; d) E. K. van den Beuken, B. L. Feringa, Tetrahedron 1998, 54, 12985–
13011.
3-(o-Hydroxyphenyl)-1-propanol: Yield 35.9 mg, 74 %. 1H NMR
(400 MHz, CDCl3): δ = 7.08–7.12 (m, 2 H), 6.84–6.90 (m, 2 H), 3.65
(t, J = 6.4 Hz, 2 H), 2.78 (t, J = 7.2 Hz, 2 H), 1.85–1.92 (m, 2 H) ppm.
13C NMR (100 MHz, CDCl3): δ = 154.1, 130.5, 127.5, 127.3, 120.6,
115.6, 60.9, 32.2, 25.4 ppm.
[2] a) M. Sarkar, H. Doucet, J. K. Bera, Chem. Commun. 2013, 49, 9764–9766;
b) P. Daw, T. Ghatak, H. Doucet, J. K. Bera, Organometallics 2013, 32,
4306–4313; c) A. Sinha, M. Majumdar, M. Sarkar, T. Ghatak, J. K. Bera,
Organometallics 2013, 32, 340–349; d) S. M. W. Rahaman, D. Das, N. Sad-
hukhan, A. Sinha, J. K. Bera, Inorg. Chim. Acta 2011, 374, 320–326; e) J. K.
Bera, N. Sadhukhan, M. Majumdar, Eur. J. Inorg. Chem. 2009, 4023–4038;
f) S. K. Patra, J. K. Bera, Organometallics 2007, 26, 2598–2603; g) S. K.
Patra, J. K. Bera, Organometallics 2006, 25, 6054–6060; h) J. K. Bera, E. J.
Schelter, S. K. Patra, J. Bacsa, K. R. Dunbar, Dalton Trans. 2006, 4011–
4019; i) S. K. Patra, N. Sadhukhan, J. K. Bera, Inorg. Chem. 2006, 45, 4007–
4015.
[3] G.-M. Lin, M. Sigrist, E.-C. Horng, C.-h. Chen, C.-Y. Yeh, G.-H. Lee, S.-M.
Peng, Z. Anorg. Allg. Chem. 2015, 641, 2258–2265.
[4] a) W.-F. Fu, L.-F. Jia, W.-H. Mu, X. Gan, J.-B. Zhang, P.-H. Liu, Q.-Y. Cao, G.-
J. Zhang, L. Quan, X.-J. Lv, Q.-Q. Xu, Inorg. Chem. 2010, 49, 4524–4533;
b) Y. Chen, J.-S. Chen, X. Gan, W.-F. Fu, Inorg. Chim. Acta 2009, 362, 2492–
2498.
[5] a) T. C. Davenport, T. D. Tilley, Dalton Trans. 2015, 44, 12244–12255; b)
T. C. Davenport, T. D. Tilley, Angew. Chem. Int. Ed. 2011, 50, 12205–12208;
Angew. Chem. 2011, 123, 12413–12416.
[6] a) H. Araki, K. Tsuge, Y. Sasaki, S. Ishizaka, N. Kitamura, Inorg. Chem. 2007,
46, 10032–10034.
[7] X.-J. Su, M. Gao, L. Jiao, R.-Z. Liao, P. E. M. Siegbahn, J.-P. Cheng, M.-T.
Zhang, Angew. Chem. Int. Ed. 2015, 54, 4909–4914; Angew. Chem. 2015,
127, 4991–4996.
[8] L. A. Wilkinson, L. McNeill, P. A. Scattergood, N. J. Patmore, Inorg. Chem.
2013, 52, 9683–9691.
2-Phenylethanol: Yield 33.0 mg, 90 %. 1H NMR (400 MHz, CDCl3):
δ = 7.30–7.34 (m, 2 H), 7.23–7.26 (m, 3 H), 3.84 (t, J = 6.4 Hz, 2 H),
2.86 (t, J = 6.4 Hz, 2 H), 1.88 (br., 1 H) ppm. 13C NMR (100 MHz,
CDCl3): δ = 138.5, 129.0, 128.5, 126.4, 63.5, 39.1 ppm.
1,4-Butanediol: Yield 21.9 mg, 81 %. 1H NMR (400 MHz, CDCl3): δ =
3.63 (t, J = 6 Hz, 4 H), 3.08 (br., 1 H), 1.61–1.67 (m, 4 H) ppm. 13C
NMR(100 MHz, CDCl3): δ = 62.5, 29.8 ppm.
1,5-Pentanediol: Yield 24.7 mg, 79 %. 1H NMR (400 MHz, CDCl3):
δ = 3.61 (t, J = 6.4 Hz, 4 H) 2.22 (br., 1 H), 1.53–1.60 (m, 4 H),
1.42–1.44 (m, 2 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 62.5, 32.2,
21.9 ppm.
1,6-Hexanediol: Yield 26.9 mg, 76 %. 1H NMR (400 MHz, CDCl3):
δ = 3.61 (t, J = 6 Hz, 4 H), 1.94 (br., 2 H), 1.53–1.57 (m, 4 H), 1.34–1.38
(m, 4 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 62.7, 32.5, 25.4 ppm.
Crystallography: Crystals suitable for X-ray determination were ob-
tained for 3, 5·(CF3COOH)2(CH3CN)2 and 8 by recrystallization. Cell
parameters were determined using a Siemens SMART CCD diffrac-
tometer. The structures were solved using the SHELXS-97 pro-
gram[22] and refined using the SHELXL-97 program[23] by full-matrix
least squares on the F2 values. CCDC 1453770 (for 3), 1453771 (for
5), and 1453772 (for 8) contain the supplementary crystallographic
[9] J. D. Aguirre, D. A. Lutterman, A. M. Angeles-Boza, K. R. Dunbar, C. Turro,
Inorg. Chem. 2007, 46, 7494–7502.
Crystal Data for 3: C24H23F6N6O6PRu2, Fw = 838.59, monoclinic,
P21/c, a = 12.7015(2) Å, b = 31.9155(5) Å, c = 8.19920(10) Å, ꢀ =
104.634(2)°, V = 3215.92(8) Å3, Z = 4, Dcalcd. = 1.732 Mg/m3, F(000) =
1656, crystal size: 0.25 × 0.15 × 0.10 mm, θ = 2.97–27.49°, 35142
reflections collected, 7266 reflections [R(int) = 0.0294], final R indi-
ces [I > 2σ(I)]: R1 = 0.0361, wR2 = 0.1174, for all data R1 = 0.0432,
wR2 = 0.1220, goodness-of-fit on F2 = 1.153.
[10] T. Tanase, H. Takenaka, E. Goto, J. Organomet. Chem. 2007, 692, 175–183.
[11] M. Basato, A. Biffis, G. Martinati, C. Tubaro, C. Graiff, A. Tiripicchio, L. A.
Aronica, A. M. Caporusso, J. Organomet. Chem. 2006, 691, 3464–3471.
[12] T. Suzuki, Inorg. Chim. Acta 2006, 359, 2431–2438.
[13] a) W. R. Tikkanen, E. Binamira-Soriaga, W. C. Kaska, P. C. Ford, Inorg. Chem.
1984, 23, 141–146; b) W. R. Tikkanen, E. Binamira-Soriaga, W. C. Kaska,
P. C. Ford, Inorg. Chem. 1983, 22, 1147–1148; c) W. R. Tikkanen, C. Krue-
ger, K. D. Bomben, W. L. Jolly, W. C. Kaska, P. C. Ford, Inorg. Chem. 1984,
23, 3633–3638.
Crystal Data for 5: C24H19F9N6Ni2O9, Fw = 823.87, triclinic, P1¯, a =
10.4810(3) Å, b = 12.7454(3) Å, c = 13.0431(4) Å, α = 77.674(3)°, ꢀ =
[14] E. Binamira-Soriaga, N. L. Keder, W. C. Kaska, Inorg. Chem. 1990, 29, 3167–
3171.
66.605(3)°, γ = 81.187(2)°, V = 1557.70(7) Å3, Z = 2, Dcalcd.
=
[15] C. He, S. J. Lippard, Inorg. Chem. 2000, 39, 5225–5231.
[16] a) C.-H. Lee, C.-L. Wu, S.-A. Hua, Y.-H. Liu, S.-M. Peng, S.-T. Liu, Eur. J. Inorg.
Chem. 2015, 1417–1423; b) W.-H. Tang, Y.-H. Liu, S.-M. Peng, S.-T. Liu, J.
Organomet. Chem. 2015, 775, 94–100; c) C.-Y. Huang, K.-Y. Kuan, Y.-H. Liu,
S.-M. Peng, S.-T. Liu, Organometallics 2014, 33, 2831–2836; d) B.-S. Liao,
1.757 Mg/m3, F(000) = 828, crystal size: 0.25 × 0.20 × 0.10 mm, θ =
2.98–27.49°, 14362 reflections collected, 6911 reflections [R(int) =
0.0285], final R indices [I > 2σ(I)]: R1 = 0.0499, wR2 = 0.1422, for all
data R1 = 0.0695, wR2 = 0.1629, goodness-of-fit on F2 = 1.093.
Eur. J. Inorg. Chem. 2016, 2783–2790
2789
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim