Page 5 of 7
PleaseGdr oe en no Ct ha de jmu si st t mr yargins
DOI: 10.1039/C8GC00862K
Journal Name
COMMUNICATION
and selectivity. This mesoporous material with a surface area of 81
V. R. Gonçales, J. J. Gooding and B. A. Messerle, Green
Chem., 2017, 19, 3142–3151.
2
m /g and monomodal pore-size distribution (pore diameter 3.4 nm)
was found to have a high content of lattice oxygen and multi-
valency of both Co and Mn. The meso-1%Co-MnOx system
exhibited an enhanced activity (by ~1.5 times) as compared to the
8
9
K. C. Nicolaou, C. J. N. Mathison and T. Montagnon, Angew.
Chemie Int. Ed., 2003, 42, 4077–4082.
T.-L. Ho, Tandem organic reactions, Wiley, 2015.
M. Largeron and M.-B. Fleury, Angew. Chem. Int. Ed., 2012,
51, 1–5.
un-doped meso-MnOx material. This was also observed during the 10
relatively robust oxidation of diols and 1,2,3,4-
tetrahydroisoquinoline to their corresponding lactones and imine, 11
respectively (Scheme 2). The enhanced efficiency of this catalyst 12
was supported by the lowest reduction temperature as revealed
M. Largeron and M.-B. Fleury, Science 2013, 339, 43–4.
B. Chen, J. Li, W. Dai, L. Wang and S. Gao, Green Chem.,
2014, 3328–3334.
from H
2
-TPR (Figure S14). Most importantly, the unprecedented 13
H. Sun, F.-Z. Su, J. Ni, Y. Cao, H.-Y. He and K.-N. Fan, Angew.
Chem. Int. Ed., 2009, 48, 4390–4393.
result of cross-coupling reaction with > 99 % selectivity was truly
surprising. In contrast to this excellent activity, i) facile reduction of 14
J. Mielby, R. Poreddy, C. Engelbrekt and S. Kegnæs, Chinese
J. Catal., 2014, 35, 670–676.
4
imines to amines in the presence of NaBH ; and ii) transformation
of imines to its parent alcohols and amines, revealed the 15
applicability of this catalyst. Therefore in the absence of ligands,
additives, bases, and precious metals; this economical and 16
sustainable heterogeneous system is superior to the existing ones.
The combined effect of multivalent metal species and lattice oxygen 17
was found to be critical for the enhanced reactivity and excellent
selectivity. DFT computations were utilized to estimate the relative 18
total energies of the rate determining step and propose a reaction
mechanism which supports experimental findings. We intend to 19
continue our investigations to understand further details of the
surface chemistry and identify the role of other surface defects, 20
such as oxygen-vacancy.
L. Jiang, L. Jin, H. Tian, X. Yuan, X. Yu and Q. Xu, Chem.
Commun., 2011, 47, 10833–10835.
W. He, L. Wang, C. Sun, K. Wu, S. He, J. Chen, P. Wu and Z.
Yu, Chem. - A Eur. J., 2011, 17, 13308–13317.
J. W. Kim, J. He, K. Yamaguchi and N. Mizuno, Chem. Lett.,
2009, 38, 920–921.
S. Sithambaram, R. Kumar, Y.-C. Son and S. L. Suib, J. Catal.,
2008, 253, 269–277.
G. Jaiswal, V. G. Landge, D. Jagadeesan and E. Balaraman,
Green Chem., 2016, 18, 3232–3238.
B. L. Ryland and S. S. Stahl, Angew. Chem. Int. Ed., 2014,
53, 8824–8838.
2
2
2
2
1
2
3
4
M. Tamura and K. Tomishige, Angew. Chem. Int. Ed., 2015,
Conflicts of interest
5
4, 864–867.
H. Wang, J. Zhang, Y.-M. Cui, K.-F. Yang, Z.-J. Zheng and L.-
W. Xu, RSC Adv., 2014, 4, 34681–34686.
There are no conflicts of interest to declare
Acknowledgements
S. Samanta, S. Khilari, D. Pradhan and R. Srivastava, ACS
Sustain. Chem. Eng. , 2017, 5, 2562−2577.
M. A. Berliner, S. P. A. Dubant, T. Makowski, K. Ng, B.
Sitter, C. Wager and Y. Zhang, Org. Process Res. Dev., 2011,
S.L.S. is grateful for support of the U.S. Department of Energy,
Office of Basic Energy Sciences, Division of Chemical, Biological and
Geological Sciences under Grant DE-FG02-86ER13622.A000. The
TEM studies were performed using the facilities at the UCONN/FEI
Center for Advanced Microscopy and Materials Analysis (CAMMA).
1
5, 1052–1062.
2
2
2
2
5
6
7
8
H. Huang, J. Huang, Y.-M. Liu, H.-Y. He, Y. Cao and K.-N.
Fan, Green Chem., 2012, 14, 930–934.
P. Anastas and N. Eghbali, Chem. Soc. Rev., 2010, 39, 301–
3
12.
A. E. Wendlandt and S. S. Stahl, J. Am. Chem. Soc., 2014,
36, 506–512.
Keywords
1
.
.
.
Mesoporous materials Manganese oxide Cobalt oxide Alcohol -
S. Biswas, B. Dutta, A. Mannodi-Kanakkithodi, R. Clarke, W.
.
.
Amine coupling Heterogeneous catalysis Aerobic oxidation.
Song, R. Ramprasad and S. L. Suib, Chem. Commun., 2017,
5
3, 11751–11754.
Notes and References
2
9
S. Biswas, B. Dutta, K. Mullick, C.-H. Kuo, A. S. Poyraz and S.
L. Suib, ACS Catal., 2015, 5, 4394–4403.
1
2
R. W. Layer, Chem. Rev., 1966, 63, 489–510.
S. Kobayashi, Y. Mori, J. S. Fossey and M. M. Salter, Chem. 30
B. Dutta, S. Biswas, V. Sharma, N. O. Savage, S. P. Alpay and
S. L. Suib, Angew. Chem., 2016, 55, 2171–2175.
B. Dutta, V. Sharma, N. Sassu, Y. Dang, C. Weerakkody, J.
Macharai, R. Miao, A. Howell and S. L. Suib, Green Chem.,
2017, 19, 5350–5355.
Rev., 2011, 111, 2626–2704.
3
4
5
6
7
M. E. Belowich and J. F. Stoddart, Chem. Soc. Rev., 2012, 31
4
1, 2003–2024.
S. Kobayashi and H. Ishitani, Chem. Rev., 1999, 99, 1069–
094.
H. Naeimi, F. Salimi and K. Rabiei, J. Mol. Catal. A Chem.,
006, 260, 100–104.
B. Chen, L. Wang and S. Gao, ACS Catal., 2015, 5, 5851– 33
876.
34
C. M. Wong, R. T. McBurney, S. C. Binding, M. B. Peterson,
1
32
X. Li, T. Lunkenbein, V. Pfeifer, M. Jastak, P. K. Nielsen, F.
Girgsdies, A. Knop-Gericke, F. Rosowski, R. Schlogl and A.
Trunschke, Angew. Chem. Int. Ed., 2016, 55, 4092–4096.
S. L. Suib, J. Mater. Chem., 2008, 18, 1623–1631.
P. Van Helden, J.-A. Van Den Berg and C. J. Weststrate, ACS
Catal. , 2012, 2, 1097−1107.
2
5
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins