10.1002/anie.201914519
Angewandte Chemie International Edition
COMMUNICATION
Experimental Section
All experimental details can be found in the Supporting Information.
A)
Acknowledgements
This project has received funding from the European Union’s Horizon 2020
research and innovation program under the Marie Skłodowska-Curie grant
agreement No. 764920. We thank Prof. Dr. Rebecca Parales for providing
us with the vector pDTG141 harboring the NDO genes and Prof. Dr.
Hideaki Nojiri for plasmid pIP107D harboring the CDO genes.
Keywords: biocatalysis • oxyfunctionalization • photocatalysis •
photoinduced electron transfer • Rieske dioxygenases
[1]
[2]
J. C. Lewis, P. S. Coelho, F. H. Arnold, Chem. Soc. Rev. 2011, 40,
2003–2021.
J. Dong, E. Fernández-Fueyo, F. Hollmann, C. E. Paul, M. Pesic, S.
Schmidt, Y. Wang, S. Younes, W. Zhang, Angew. Chem. Int. Ed.
2018, 57, 9238–9261; Angew. Chem. 2018, 130, 9380-9404.
D. J. Ferraro, L. Gakhar, S. Ramaswamy, Biochem. Biophys. Res.
Commun. 2005, 338, 175–190.
B)
[3]
[4]
[5]
[6]
S. M. Barry, G. L. Challis, ACS Catal. 2013, 3, 2362–2370.
W. A. Tan, R. E. Parales, Green Biocatal. 2016, 457–471.
W. K. Dawson, R. Jono, T. Terada, K. Shimizu, PLoS One 2016, 11,
e0162031.
[7]
R. E. Parales, S. M. Resnick, in Biodegrad. Bioremediation (Eds.: A.
Singh, O.P. Ward), Springer Berlin Heidelberg, Berlin, Heidelberg,
2004, 175–195.
[8]
R. E. Parales, S. M. Resnick, C. L. Yu, D. R. Boyd, N. D. Sharma, D.
T. Gibson, J. Bacteriol. 2000, 182, 5495–5504.
[9]
O. Kweon, S. J. Kim, S. Baek, J. C. Chae, M. D. Adjei, D. H. Baek, Y.
C. Kim, C. E. Cerniglia, BMC Biochem 2008, 9, 4268-4273.
F. F. Özgen, S. Schmidt, in Biocatalysis (Eds.: Q. Husain, M.F. Ullah),
Springer International Publishing, Cham, 2019, 57–82.
D. J. Ferraro, A. Okerlund, E. Brown, S. Ramaswamy, IUCrJ 2017, 4,
648–656.
[10]
[11]
[12]
[13]
[14]
Y. Ashikawa, Z. Fujimoto, H. Noguchi, H. Habe, T. Omori, H. Yamane,
H. Nojiri, Structure 2006, 14, 1779–1789.
Figure 3. A) Effect of photobleaching of CE on the time course of the light-
driven hydroxylation catalysed by NDO H295A. The red curve visualizes the
addition of again 100 µM CE after 4 h of biotransformation, whereas the black
curve shows the light-driven biotransformation without adding additional CE. B)
Kinetic profile obtained for the light-driven whole-cell hydroxylation reaction
employing CDO M232A and NDO H295A with SO, CE and EY in combination
with either EDTA, MOPS or MES as electron donors. Reaction conditions:
100 µM photosensitizer, 10 mM 3, 25 mM EDTA or 50 mM MOPS/MES, in A)
25-300 gWCW/L and in B) 100 gWCW/L whole cells (E. coli JM109
(DE3)_pDTG141_NDO H295A or E. coli JM109_pCDOv1_CDO M232A, 19h
expression), white light (max. 112 µE L-1 s-1), 30°C, 140 rpm, 24 hours.
C. Schmidt-Dannert, F. Lopez-Gallego, Microb. Biotechnol. 2016, 9,
601–609.
L. M. Blank, B. E. Ebert, K. Buehler, B. Bühler, Antioxid. Redox
Signaling 2010, 13, 349–394.
[15]
[16]
[17]
V. Uppada, S. Bhaduri, S. B. Noronha, Curr. Sci. 2014, 106, 946.
J. Kim, C. B. Park, Curr. Opin. Chem. Biol. 2019, 49,122–129
B. O. Burek, S. Bormann, F. Hollmann, J. Z. Bloh, D. Holtmann,
Green Chem. 2019, 21, 3232-3249.
[18]
[19]
W. Zhang, F. Hollmann, Chem. Commun. 2018, 54, 7281–7289.
S. H. Lee, D. S. Choi, S. K. Kuk, C. B. Park, Angew. Chem. Int. Ed.
2018, 57, 7958–7985.
To conclude, we have shown the photo-activation of two different
ROs in an E. coli-based whole-cell system by coupling light-
harvesting complexes to hydroxylation reactions in vivo. This was
successfully conducted by using several photosensitizers for the
bioconversion of three different substrates, hence representing
the first example of photo-induced RO systems. Particularly for
challenging multi-component oxygenases, this system offers the
advantage of relying on the well-studied genetic toolbox of E. coli
as host, thereby facilitating a broad applicability of light-driven
artificial photosynthesis. The obtained product formations of up to
1.3 g/L and rates of up to 1.6 mM/h demonstrate that competitive
productivities compared to cyanobacteria were achieved.[28]
The coupling of artificial light-harvesting complexes to enzymes
inside cells provides a versatile route to accessing diverse and
selective visible-light-driven chemical syntheses especially when
unstable or multi-component enzymes are used.
[20]
[21]
T. Gulder, C. J. Seel, ChemBioChem 2019, 20, 1871.
L. Schmermund, V. Jurkaš, F. F. Özgen, G. D. Barone, H. C.
Büchsenschütz, C. K. Winkler, S. Schmidt, R. Kourist, W. Kroutil,
ACS Catal. 2019, 4115–4144.
[22]
[23]
D. Adam, L. Bösche, L. Castañeda-Losada, M. Winkler, U. P. Apfel,
T. Happe, ChemSusChem 2017, 10, 894–902.
L. C. P. Gonçalves, H. R. Mansouri Khosravi, S. PourMehdi, M.
Abdellah, B. S. Fadiga, E. Bastos, J. Sa, M. Mihovilovic, F. Rudroff,
Catal. Sci. Technol. 2019, 9, 2682-2688.
[24]
[25]
[26]
[27]
A. Taglieber, F. Schulz, F. Hollman, M. Rusek, M. T. Reetz,
ChemBioChem 2008, 9, 565–572.
L. Assil-Companioni, S. Schmidt, P. Heidinger, H. Schwab, R. Kourist,
ChemSusChem 2019, 12, 2361-2365.
S. Böhmer, K. Köninger, Á. Gómez-Baraibar, S. Bojarra, C. Mügge,
S. Schmidt, M. M. M. Nowaczyk, R. Kourist, Catalysts 2017, 7, 240.
K. Köninger, Á. Gómez Baraibar, C. Mügge, C. E. Paul, F. Hollmann,
M. M. Nowaczyk, R. Kourist, Angew. Chem. Int. Ed. 2016, 55, 5582–
5585; Angew. Chem. 2016, 128, 5672.
[28]
A. Hoschek, B. Bühler, A. Schmid, Angew. Chem. Int. Ed. 2017, 56,
This article is protected by copyright. All rights reserved.