RSC Advances
Paper
Acta, 2004, 357, 1303–1308; (d) H. Wang, T. Hagihara, 22 For transfer-hydrogenation of ketones, higher catalyst
H. Ikezawa, H. Tomizawa and E. Miki, Electronic effects of
the substituent group in 8-quinolinolato ligand on
loading and longer reaction time were necessary to achieve
optimum yield of the desired products.
geometrical
isomerism
for
nitrosylruthenium(II) 23 (a) R. Saha, A. Mukherjee and S. Bhattacharya, Heteroleptic
complexes, Inorg. Chim. Acta, 2000, 299, 80–90; (e)
J. T. Warren, W. Chen, D. H. Johnston and C. Turro,
Ground-state properties and excited-state reactivity of 8-
quinolate complexes of ruthenium(II), Inorg. Chem., 1999,
1,4-diazabutadiene complexes of ruthenium: Synthesis,
characterization and utilization in catalytic transfer
hydrogenation, Eur. J. Inorg. Chem., 2020, 4539–4548; (b)
J. Karmakar and S. Bhattacharya, Arene-ruthenium
complexes with 2-(arylazo)phenol as ancillary ligand:
Synthesis, characterization, and utilization in catalytic
transfer-hydrogenation, Polyhedron, 2019, 172, 39–44; (c)
P. Dhibar, P. Paul and S. Bhattacharya, Formation of
acetone thiosemicarbazone complex of ruthenium via
38, 6187–6192.
1
5 (a) I. Bratsos, E. Mitri, F. Ravalico, E. Zangrando,
T. Gianferrara, A. Bergamo and E. Alessio, New half
sandwich Ru(II) coordination compounds for anticancer
activity, Dalton Trans., 2012, 41, 7358–7371; (b) D. Ooyama,
T. Kobayashi, K. Shiren and K. Tanaka, Regulation of
electron donating ability to metal center: isolation and
characterization of ruthenium carbonyl complexes with
N,N- and/or N,O-donor polypyridyl ligands, J. Organomet.
Chem., 2003, 665, 107–113; (c) T. Hirano, M. Kuroda,
N. Takeda, M. Hayashi, M. Mukaida, T. Oi and H. Nagao,
Cis–trans isomerization of {RuNO}6-type nitrosylruthenium
complexes containing 2-pyridinecarboxylate and structural
usual
chelation
and
unexpected
fragmentation:
Characterization and catalytic application, J. Indian Chem.
Soc., 2016, 93, 781–788; (d) J. Dutta, M. G. Richmond and
S. Bhattacharya, Cycloruthenation of N-(naphthyl)
salicylaldimine and related ligands: Utilization of the Ru–C
bond in catalytic transfer hydrogenation, Eur. J. Inorg.
Chem., 2014, 4600–4610; (e) N. Saha Chowdhury,
C. GuhaRoy, R. J. Butcher and S. Bhattacharya, Mixed-
ligand 1,3-diaryltriazenide complexes of ruthenium:
Synthesis, structure and catalytic properties, Inorg. Chim.
Acta, 2013, 406, 20–26.
characterization of
a
m-H3O2 bridged dinuclear
nitrosylruthenium complex, Dalton Trans., 2002, 2158–2162.
6 The isomer labels were assigned considering the mutual
1
disposition of the two nitrogens rst, and that of the two 24 Ru-catalyzed Oppenauer oxidation: (a) L. Pardatscher,
the oxygens next. For example, ct- means the two nitrogens
are cis, and the two oxygens are trans.
B. J. Hofmann, P. J. Fischer, S. M. H ¨o lzl, R. M. Reich,
F. E. K u¨ hn and W. Baratta, Highly Efficient Abnormal NHC
Ruthenium Catalyst for Oppenauer-Type Oxidation and
Transfer Hydrogenation Reactions, ACS Catal., 2019, 9,
11302–11306; (b) R. Labes, C. Battilocchio, C. Mateos,
G. R. Cumming, O. d. Frutos, J. A. Rinc ´o n, K. Binder and
S. V. Ley, Chemoselective continuous Ru-catalyzed
hydrogen-transfer Oppenauer-type oxidation of secondary
alcohols, Org. Process Res. Dev., 2017, 21, 1419–1422; (c)
Q. Wang, W. Du, T. Liu, H. Chai and Z. Yu, Ruthenium(II)–
NNN complex catalyzed Oppenauer-type oxidation of
secondary alcohols, Tetrahedron Lett., 2014, 55, 1585–1588;
(d) C. M. Nicklaus, P. H. Phua, T. Buntara, S. Noel,
1
1
7 The same [Ru(dppbz)(pic) ] complex is also obtained from
2
reaction of equimolar [Ru(dppbz)(CO)
acid, but in much less yield.
2 2
Cl ] and 2-picolinic
8 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone,
G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato,
A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts,
B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov,
J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini,
F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson,
D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega,
G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, T. Vreven, K. Throssell,
J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. Bearpark,
J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov,
T. Keith, R. Kobayashi, J. Normand, K. Raghavachari,
A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi,
J. M. Millam, M. Klene, C. Adamo, R. Cammi,
J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas,
J. B. Foresman and D. J. Fox, Gaussian 09, Revision A.02,
Gaussian, Inc., Wallingford CT, 2016.
0
H. J. Heeres and J. G. d. Vries, Ruthenium/1,1 -bis-
(diphenylphosphino)ferrocene-catalysed
Oppenauer
oxidation of alcohols and lactonisation of a,u-diols using
methyl isobutyl ketone as oxidant, Adv. Synth. Catal., 2013,
355, 2839–2844; (e) S. Manzini, C. A. Urbina-Blanco and
S. P. Nolan, Chemoselective oxidation of secondary
alcohols using
a ruthenium phenylindenyl complex,
Organometallics, 2013, 32, 660–664; (f) W. Du, L. Wang,
P. Wu and Z. Yu, A versatile ruthenium (II)–NNC complex
catalyst for transfer hydrogenation of ketones and
Oppenauer-type oxidation of alcohols, Chem.–Eur. J., 2012,
18, 11550–11554; (g) R. Mello, J. Mart ıꢁ nez-Ferrer,
G. Asensio and M. E. Gonz ´a lez-N u´ n˜ ez, Oppenauer
oxidation of secondary alcohols with 1,1,1-triuoroacetone
as hydride acceptor, J. Org. Chem., 2007, 72, 9376–9378; (h)
S. Gauthier, R. Scopelliti and K. Severin, A heterobimetallic
rhodium(I)-ruthenium(II) catalyst for the Oppenauer-type
oxidation of primary and secondary alcohols under mild
conditions, Organometallics, 2004, 23, 3769–3771; (i)
1
2
2
9 In the [Ru(dppbz)(CO)(4-picoline)Cl ] complex the ILCT
2
component was found to be absent.
0 All potentials are referenced to saturated calomel electrode
(SCE).
1 G. K. Lahiri, S. Bhattacharya, B. K. Ghosh and
A. Chakravorty, Ruthenium and osmium complexes of N,O
chelators: syntheses, oxidation levels, and distortion
parameters, Inorg. Chem., 1987, 26, 4324–4331.
15630 | RSC Adv., 2021, 11, 15617–15631
© 2021 The Author(s). Published by the Royal Society of Chemistry