LETTER
NMP-Promoted Reduction of Acid Chlorides to Aldehydes
1103
Table 2 Reduction of Acid Chlorides with the HSnBu3/NMP Sys-
tem at Room Temperature (continued)
Harding, P. J. C. Tetrahedron Lett. 1978, 19, 975.
(d) Sorrell, T. N.; Pearlman, P. S. J. Org. Chem. 1980, 45,
3449. (e) Hutchins, R. O.; Markowitz, M. Tetrahedron Lett.
1980, 21, 813. (f) Johnstone, R. A. W.; Telford, R. P. Chem.
Commun. 1978, 354.
O
O
HSnBu3 (1.05 equiv)
NMP, r.t.
R
Cl
R
H
(6) (a) Cooke, M. P. J. Am. Chem. Soc. 1970, 92, 6080.
(b) Watanabe, Y.; Mitaudo, T.; Tanaka, M.; Yamamoto, K.;
Okajima, T.; Takegami, Y. Bull. Chem. Soc. Jpn. 1971, 44,
2569. (c) Siegl, W. O.; Collman, J. P. J. Am. Chem. Soc.
1972, 94, 2516. (d) Cole, T. E.; Pettit, R. Tetrahedron Lett.
1977, 18, 781. (e) Kinney, R. J.; Jones, W. D.; Bergman, R.
J. Am. Chem. Soc. 1978, 100, 7902. (f) Kao, S. C.; Gaua,
P. L.; Youngdahl, K.; Darenabourg, M. Y. Organometallics
1984, 3, 1601.
(7) (a) Shamsuddin, K. M.; Zobairi, M. O.; Musharraf, M. A.
Tetrahedron Lett. 1998, 39, 8153. (b) Jia, X.; Liu, X.; Li, J.;
Zhao, P.; Zhang, Y. Tetrahedron Lett. 2007, 48, 971.
(c) Maeda, H.; Maki, T.; Ohmori, H. Tetrahedron Lett. 1995,
36, 2247.
2
1
Entry Acide chloride 1
Aldehyde 2
Yield
(%)a
COCl
CHO
13
85
1m
1n
2m
2n
COCl
COCl
CHO
CHO
14
15
96
65
(8) (a) Citron, J. D. J. Org. Chem. 1969, 34, 1977. (b) Courtis,
B.; Dent, S. P.; Eaborn, C.; Pidcock, A. J. Chem. Soc.,
Dalton Trans. 1975, 2460. (c) Lee, K. L.; Maleczka, R. E.
Jr. Org. Lett. 2006, 8, 1887.
1o
2o
a Isolated pure product after column chromatography.
b Bu3SnH (2.1 equiv) was used.
(9) (a) Guibé, F.; Four, P.; Rivière, H. J. Chem. Soc., Chem.
Commun. 1980, 432. (b) Four, P.; Guibé, F. J. Org. Chem.
1981, 46, 4439. (c) Malanga, C.; Mannucci, S.; Lardicci, L.
Tetrahedron Lett. 1997, 38, 8093. (d) Inoue, K.; Yasuda,
M.; Shibata, I.; Baba, A. Tetrahedron Lett. 2000, 41, 113.
(10) For reviews, see: (a) Neumann, W. P. Synthesis 1987, 665.
(b) Mitchell, T. N. J. Organomet. Chem. 1986, 304, 1.
(11) (a) Stern, E.; Muccioli, G. G.; Bosier, B.; Hamtiaux, L.;
Millet, R.; Poupaert, J. H.; Henichart, J. P.; Depreux, P.;
Goossens, J. F.; Lambert, D. M. J. Med. Chem. 2007, 50,
5471. (b) Chelliah, M. V.; Chackalamannil, S.; Xia, Y.;
Eagen, K.; Clasby, M. C.; Gao, X. B.; Greenlee, W.; Ahn,
H. S.; Agans-Fantuzzi, J.; Boykow, G.; Hsieh, Y. S.; Bryant,
M.; Palamanda, J.; Chan, T. M.; Hesk, D.; Chintala, M.
J. Med. Chem. 2007, 50, 5147. (c) Gracia, J.; Thomas, E. J.
J. Chem. Soc., Perkin Trans. 1 1998, 17, 2865.
(12) (a) Liron, F.; Le Garrec, P.; Alami, M. Synlett 1999, 246.
(b) Alami, M.; Liron, F.; Gervais, M.; Peyrat, J.-F.; Brion,
J.-D. Angew. Chem. Int. Ed. 2002, 41, 1578. (c) Liron, F.;
Gervais, M.; Peyrat, J.-F.; Alami, M.; Brion, J.-D.
Tetrahedron Lett. 2003, 44, 2789. (d) Hamze, A.; Provot,
O.; Alami, M.; Brion, J.-D. Org. Lett. 2005, 7, 5625.
(13) (a) Alami, M.; Ferri, F. Synlett 1996, 755. (b) Ferri, F.;
Alami, M. Tetrahedron Lett. 1996, 37, 7971. (c) Ferri, F.;
Alami, M. Tetrahedron Lett. 1998, 39, 4243. (d) Hamze,
A.; Provot, O.; Brion, J.-D.; Alami, M. J. Org. Chem. 2007,
72, 3868. (e) Hamze, A.; Veau, D.; Provot, O.; Brion, J.-D.;
Alami, M. J. Org. Chem. 2009, 74, 1337.
In summary, we have developed a simple, efficient and
general process for the partial reduction of acid chlorides
using tributyltin hydride in NMP at room temperature.
This mild and transition-metal-free procedure works well
with (hetero)aromatic as well as aliphatic acid chlorides
and allows the efficient preparation of a variety of func-
tionalized aldehydes in good to excellent yields. In the
present method, the survival of an O-allyl ether function,
which is commonly used as an alcohol-protecting group,
must be highlighted as it constitutes a real advantage
when compared with palladium-catalyzed procedures.
Due to its simplicity and versatility, we believe that this
methodology should find broad applications in synthetic
organic chemistry.
Acknowledgment
The CNRS is gratefully thanked for support of this research.
References and Notes
(1) For reviews on the Rosenmund reduction, see: (a)Mosettig,
E.; Mozingo, R. Org. React. 1948, 4, 362. (b)Larsen, R. D.;
King, A. O. In Handbook of Organopalladium Chemistry for
Organic Synthesis, Vol. 2; Negishi, E., Ed.; John Wiley and
Sons: New York, 2002, Chap. VI. 2.4, 2473.
(2) (a) Brown, H. C.; McFarlin, R. F. J. Am. Chem. Soc. 1956,
78, 252. (b) Brown, H. C.; Subba Rao, B. C. J. Am. Chem.
Soc. 1958, 80, 5377. (c) Brown, H. C.; Krishnamurthy, S.
Tetrahedron 1979, 35, 567. (d) Cha, J. S.; Brown, H. C.
J. Org. Chem. 1993, 58, 4732.
(3) Babler, J. H.; Invergo, B. J. Tetrahedron Lett. 1981, 22, 11.
(4) Corriu, R. J. P.; Lanneau, G. F.; Parrott, M. Tetrahedron
Lett. 1988, 29, 1271.
(5) (a) Sorrell, T. N.; Spillane, R. J. Tetrahedron Lett. 1978, 19,
2473. (b) Fleet, G. W. J.; Fuller, C. J.; Harding, P. J. C.
Tetrahedron Lett. 1978, 19, 1437. (c) Fleet, G. W. J.;
(14) Typical procedure: Acid chloride 1 (1 mmol) was dissolved
in NMP (1 mL) under an argon atmosphere. Bu3SnH (1.05
mmol) was added dropwise and the resulting mixture was
stirred at r.t. for 1 h. Then, H2O (2 mL) was added and the
mixture was extracted with EtOAc (3 × 5 mL). The
combined organic phases were washed with an aq sat.
NH4Cl (3 × 5 mL), dried over MgSO4 and concentrated. The
crude mixture was purified by column chromatography on
silica gel to give the desired aldehyde 2
(15) (a) Guibe, F.; Dangles, O.; Balavoine, G. Tetrahedron Lett.
1986, 27, 2365. (b) L’Hermite, N.; Peyrat, J.-F.; Hildgen, P.;
Brion, J.-D.; Alami, M. Synthesis 2008, 1049.
(16) Cekovic, Z. Tetrahedron Lett. 1972, 13, 749.
Synlett 2010, No. 7, 1101–1103 © Thieme Stuttgart · New York