X.-M. Zeng et al. / Tetrahedron Letters 52 (2011) 5652–5655
5655
support of his research program (F.C.P., G.K. 02.740.11.5211;
Zayavka 2010-1.5-000-010-044). This work was supported by a re-
search grant from the National Science Foundation (CHE-1009038).
Table 4 (continued)
Entry Catalyst Substrate
Product
Time
(h)
Yieldb
(%)
O
O
Supplementary data
6
7
5
6
24
12
68
92
Supplementary data (experimental procedures and 1H and 13C
NMR spectra for representative products) associated with this Let-
O
References and notes
8
5
6
6
24
25
83
77
1. (a) Sheldon, R. A.; Kochi, J. K. Metal-Catalyzed Oxidation of Organic Compounds;
Academic Press: New York, 1981; (b) Hudlicky, M. Oxidations in Organic
Chemistry; American Chemical Society: Washington, DC, 1990; (c)Bäckvall, J.-E.,
Ed.Modern Oxidation Methods; Wiley-VCH: Weinheim, Germany, 2004.
2. (a) Ojha, L. R.; Kudugunti, S.; Maddukuri, P. P.; Kommareddy, A.; Gunna, M. R.;
Dokuparthi, P.; Gottam, H. B.; Botha, K. K.; Parapati, D. R.; Vinod, T. K. Synlett
2009, 117–121; (b) Yusubov, M. S.; Zagulyaeva, A. A.; Zhdankin, V. V. Chem. Eur.
J. 2009, 15, 11091–11094; (c) Stang, P. J.; Zhdankin, V. V. Chem. Rev. 1996, 96,
1123–1178; (d) Shim, W. G.; Jung, S. C.; Seo, S. G.; Kim, S. C. Catal. Today 2011,
164, 500–506.
3. (a) Varvoglis, A. Hypervalent Iodine in Organic Synthesis; London: Academic
Press, 1997; (b)Hypervalent Iodine Chemistry; Wirth, T., Ed.; Springer: Berlin,
2003; (c) Koser, G. F Aldrichimica Acta 2001, 34, 89–102; (d) Koser, G. F. Adv.
Heterocycl. Chem. 2004, 86, 225–292; (e) Moriarty, R. M. J. Org. Chem. 2005, 70,
2893–2903; (f) Quideau, S.; Pouysegu, L.; Deffieux, D. Synlett 2008, 467–495;
(g) Ladziata, U.; Zhdankin, V. V. ARKIVOC 2006, 26–58; (h) Ciufolini, M. A.;
Braun, N. A.; Canesi, S.; Ousmer, M.; Chang, J.; Chai, D. Synthesis 2007, 3759–
3772; i Zhdankin, V. V. Science of Synthesis 2007, 31a, 161–234. Chapter 31.4.1;
(j) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299–5358; (k) Ladziata,
U.; Zhdankin, V. V. Synlett 2007, 527–537; (l) Ochiai, M.; Miyamoto, K. Eur. J.
Org. Chem. 2008, 4229–4239; (m) Ngatimin, M.; Lupton, D. W. Aust. J. Chem.
2010, 63, 653–658; (n) Yusubov, M. S.; Nemykin, V. N.; Zhdankin, V. V.
Tetrahedron 2010, 66, 5745–5752; (o) Quideau, S.; Wirth, T. Tetrahedron 2010,
66, 5737–5738; (p) Uyanik, M.; Ishihara, K. Aldrichimica Acta 2010, 43, 83–91;
(q) Merritt, E. A.; Olofsson, B. Angew. Chem., Int. Ed. 2009, 48, 9052–9070; (r)
Merritt, E. A.; Olofsson, B. Synthesis 2011, 517–538; (s) Zhdankin, V. V. J. Org.
Chem. 2011, 76, 1185–1197.
O
O
9
6
O
O
10
12
O
15
O
d
11
12
5
6
PhCH3
PhCH3
PhCO2H
PhCHO
PhCO2H
PhCHO
24
24
85
d
80
4. (a) Richardson, R. D.; Wirth, T. Angew. Chem., Int. Ed. 2006, 45, 4402–4404; (b)
Zhdankin, V. V. ARKIVOC 2009, 1–62; (c) Dohi, T.; Kita, Y. Chem. Commun. 2009,
2073–2085; (d) Uyanik, M.; Ishihara, K. Chem. Commun. 2009, 2086–2099; (e)
Mueller, P.; Godoy, J. Tetrahedron Lett. 1981, 22, 2361–2364; (f) Dohi, T.; Kita, Y.
Kagaku (Kyoto, Japan) 2006, 61, 68–69; (g) Yakura, T.; Yamauchi, Y.; Tian, Y.;
Omoto, M. Chem. Pharm. Bull. 2008, 56, 1632–1634; (h) Yakura, T.; Ozono, A.
Adv. Synth. Catal. 2011, 353, 855–859; (i) Miura, T.; Nakashima, K.; Tada, N.;
Itoh, A. Chem. Commun. 2011, 47, 1875–1877.
a
All reactions were performed at room temperature using alkylarene (0.2 mmol),
catalyst 5 or 6 (30 mg, 0.018 mmol of I and 0.0018 mmol of Ru), and oxone
(1.2 mmol) in MeCN/H2O (1:1 v/v) unless otherwise noted.
b
Yields of isolated products.
Recycled catalyst 6 was used.
c
d
Preparative yield of benzoic acid; benzaldehyde was present as a minor product
(under 10% as estimated by 1H NMR of reaction mixture).
5. Lenoir, D. Angew. Chem., Int. Ed. 2006, 45, 3206–3210.
6. Constable, D. J. C.; Curzons, A. D.; Cunningham, V. L. Green Chem. 2002, 4, 521–
527.
7. (a) Yusubov, M. S.; Chi, K.-W.; Park, J. Y.; Karimov, R.; Zhdankin, V. V.
Tetrahedron Lett. 2006, 47, 6305–6308; (b) Koposov, A. Y.; Karimov, R. R.;
Pronin, A. A.; Skrupskaya, T.; Yusubov, M. S.; Zhdankin, V. V. J. Org. Chem. 2006,
71, 9912–9914.
8. (a) Uyanik, M.; Akakura, M.; Ishihara, K. J. Am. Chem. Soc. 2009, 131, 251–262;
(b) Thottumkara, A. P.; Bowsher, M. S.; Vinod, T. K. Org. Lett. 2005, 7, 2933–
2936; (c) Schulze, A.; Giannis, A. Synthesis 2006, 257–260; (d) T; Yakura, T.;
Konishi, T. Synlett 2007, 765–768; (e) Yakura, T.; Tian, Y.; Yamauchi, Y.; Omoto,
M.; Konishi, T. Chem. Pharm. Bull. 2009, 57, 252–256.
9. (a) Minakata, S.; Komatsu, M. Chem. Rev. 2009, 109, 711–724; (b) Shamim, T.;
Paul, S. Catal. Lett. 2010, 136, 260–265; (c) Gu, Y.; Ogawa, C.; Kobayashi, J.; Mori,
Y.; Kobayashi, S. Angew. Chem., Int. Ed. 2006, 45, 7217–7220.
10. (a) Paul, S.; Clark, J. H. J. Mol. Catal. A Chem. 2004, 215, 107–111; (b) Choudhary,
D.; Paul, S.; Gupta, R.; Clark, J. H. Green Chem. 2006, 8, 479–482; (c) Shamim, T.;
Gupta, M.; Paul, S. J. Mol. Catal. A Chem. 2009, 302, 15–19; (d) Shamim, T.;
Choudhary, D.; Mahajan, S.; Gupta, R.; Paul, S. Catal. Commun. 2009, 10, 1931–
1935.
entry 3), which was similar to the activity of recovered catalyst 5
(Table 2, entry 7).
In summary, we designed and synthesized novel bifunctional
SiO2-supported iodoarene–RuCl3 catalysts bearing two catalytic
sites, the iodoarene and RuCl3 moieties. These catalysts were dem-
onstrated to be useful for the efficient and environmentally benign
oxidation of alcohols and aromatic hydrocarbons to corresponding
carbonyl compounds using oxone as a stoichiometric oxidant. Due
to the mild reaction conditions, our protocol is highly selective and
generally does not afford products of the C–C bond cleavage.
Moreover, these bifunctional catalysts can be recovered by simple
filtration and directly reused.
11. (a) Chen, J.-M.; Zeng, X.-M.; Middleton, K.; Zhdankin, V. V. Tetrahedron Lett.
2011, 52, 1952–1955; (b) Chen, J.-M.; Zeng, X.-M.; Zhdankin, V. V. Synlett 2010,
2771–2774; (c) Yusubov, M. S.; Zhdankin, V. V. Mendeleev Commun. 2010, 20,
185–191; (d) Chen, J.-M.; Huang, X. Synthesis 2004, 2459–2462; (e) Chen, J.-M.;
Huang, X. Synthesis 2004, 1577–1580.
Acknowledgments
J.-M. Chen thanks the financial Foundation of Jiaxing University
for supporting his visit to the University of Minnesota Duluth.
Viktor Zhdankin is thankful to the Government of Russia for
12. Marcotullio, M. C.; Epifano, F.; Curini, M. Trends Org. Chem. 2003, 10, 21–34.