152
L.A. Parreira et al. / Applied Catalysis A: General 397 (2011) 145–152
of the dehydrogenation of a hydrate formed by the interaction of
the aldehyde with trace water instead of methanol. The oxidation
of primary alcohols to carboxylic acids over gold catalysts is usually
presented by a similar mechanism which involves the intermediate
formation of an aldehyde followed by the formation of a hydrate
and subsequent oxidation of the latter to a carboxylic acid [16].
[3] A.S.K. Hashmi, G.J. Hutchings, Angew. Chem. Int. Ed. 45 (2006) 7896–7936.
[4] C. Della Pina, E. Falletta, L. Prati, M. Rossi, Chem. Soc. Rev. 37 (2008) 2077–2095.
[5] G.J. Hutchings, Chem. Commun. (2008) 1148–1164.
[6] A. Corma, H. Garcia, Chem. Soc. Rev. 37 (2008) 2096–2126.
[7] L. Prati, M. Rossi, J. Catal. 176 (1998) 552–560.
[8] A. Abad, P. Concepcion, A. Corma, H. Garcia, Angew. Chem. Int. Ed. 44 (2005)
4066–4069.
[9] J. Muzart, Tetrahedron 59 (2003) 5789–5816.
[10] M.J. Schultz, M.S. Sigman, Tetrahedron 62 (2006) 8227–8241.
[11] K. Mori, T. Hara, T. Mizugaki, K. Ebitani, K. Kaneda, J. Am. Chem. Soc. 126 (2004)
10657–10666.
4. Conclusions
[12] K. Yamaguchi, N. Mizuno, Angew. Chem. Int. Ed. 41 (2002) 4538–4542.
[13] T. Mallat, A. Baiker, Catal. Today 19 (1994) 247–283.
[14] T. Nishimura, N. Kakiuchi, M. Inoue, S. Uemura, Chem. Commun. (2000)
1245–1246.
[15] T. Hayashi, T. Inagaki, N. Itayama, H. Baba, Catal. Today 117 (2006) 210–213.
[16] I.S. Nielsen, E. Taarning, K. Egeblad, R. Madsen, C.H. Christensen, Catal. Lett. 116
(2007) 35–40.
[17] E. Taarning, A. Theilgaard Madsen, J.M. Marchetti, K. Egeblad, C.H. Christensen,
Green Chem. 10 (2008) 408–414.
[18] S.K. Klitgaard, A.T. DeLa Riva, S. Helveg, R.M. Werchmeister, C.H. Christensen,
Catal. Lett. 126 (2008) 213–217.
[19] F.-Z. Su, J. Ni, H. Sun, Y. Cao, H.-Y. He, K.-N. Fan, Chem. Eur. J. 14 (2008)
7131–7135.
[20] R.L. Oliveira, P.K. Kiyohara, L.M. Rossi, Green Chem. 11 (2009) 1366–1370.
[21] N. Moria, H. Togo, Tetrahedron 61 (2005) 5915–5925.
[22] C.E. McDonald, L.E. Nice, A.W. Shaw, N.B. Nestor, Tetrahedron Lett. 34 (1993)
2741–2744.
Nanosized gold supported on HMS is an effective catalyst for
the liquid-phase aerobic oxidation of benzyl alcohol. The modifica-
tion of the support with Ce, Ti, or Fe ions improves significantly the
catalytic performance of the materials. Ce and Ti are more effective
promoters as compared to Fe in terms of catalyst stability. Although
the modifier changes the morphological properties of the mate-
rials, no direct correlations with the catalyst behavior have been
observed. The Au/HMS-Ce and Au/HMS-Ti materials efficiently per-
form the one-pot aerobic oxidative esterification of benzyl alcohol
exhibiting high activity, selectivity to methyl benzoate and stabil-
ity. The significant practical advantages of the process are the use
of easily recoverable heterogeneous catalysts in very low loadings
and molecular oxygen as a final oxidant as well as the possibility
to obtain the desired product in high final concentrations. Large
pore HMS catalysts could be especially important for the conver-
sion of bulky molecules in the fine chemicals industry. Therefore,
our further studies will be targeted toward the application of the
Au/HMS catalysts for the oxidation of bulky biomass-based alcohols
within our ongoing project aimed at adding value to the natural
ingredients of renewable essential oils.
[23] A. Corma, Chem. Rev. 97 (1997) 2373–2419.
[24] P.T. Tanev, M. Chibwe, T.J. Pinnavaia, Nature 368 (1994) 321–323.
[25] P.T. Tanev, T.J. Pinnavaia, Science 267 (1995) 865–867.
[26] A. Tuel, Micropor. Mesopor. Mater. 27 (1999) 151–169.
[27] T.A. Zepeda, B. Pawelec, J.L.G. Fierro, T. Halachev, Appl. Catal. B 71 (2007)
223–236.
[28] J.A. Hernandez, S. Gómez, B. Pawelec, T.A. Zepeda, Appl. Catal. B 89 (2009)
128–136.
[29] P. Castan˜o, T.A. Zepeda, B. Pawelec, M. Makkee, J.L.G. Fierro, J. Catal. 267 (2009)
30–39.
[30] T.A. Zepeda, B. Pawelec, J.L.G. Fierro, A. Montesinos, A. Olivas, S. Fuentes, T.
Halachev, Micropor. Mesopor. Mater. 111 (2008) 493–506.
[31] B. Pawelec, P. Castan˜o, T.A. Zepeda, Appl. Surf. Sci. 254 (2008) 4092–4102.
[32] N. Bogdanchikova, A. Pestryakov, M.H. Farias, J.A. Diaz, M. Avalos, J. Navarrete,
Solid State Sci. 7 (2008) 908–914.
[33] A. Simakov, I. Tuzovskaya, A. Pestryakov, N. Bogdanchikova, V. Gurin, M. Avalos,
M.H. Farías, Appl. Catal. A 331 (2007) 121–128.
[34] I. Tuzovskaya, N. Bogdanchikova, A. Simakov, V. Gurin, A. Pestryakov, M. Avalos,
M.H. Farías, Chem. Phys. 338 (2007) 23–32.
[35] C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. Muilenberg, Handbook
of X-ray Photoelectron Spectroscopy, Perkin Elmer Co., Eden Prairie, MN, 1979,
p. 183.
[36] M.C. Capel-Sanchez, J.M. Campos-Martin, J.L.G. Fierro, M.P. de Frutos, A.P. Polo,
Chem. Commun. (2000) 855–856.
Acknowledgments
The authors would like to express their gratitude to E. Flores,
J.A. Peralta, P. Casillas, I. Gradilla, M. Sainz, C. Gonzalez, M. Vega,
and J. Palomares for their valuable technical assistance with the
experimental work. This research was supported by CNPq, CAPES,
FAPEMIG and INCT-Catálise (Brazil), by CONACYT project No 79062,
PAPIT-UNAM IN100908 (Mexico), and by RFBR grant 09-03-00347-
а (Russia).
[37] F. Boccuzzi, A. Chiorino, M. Manzoli, Surf. Sci. 454 (2000) 942–946.
[38] F. Boccuzzi, A. Chiorino, M. Manzoli, D. Andreeva, T. Tabakova, J. Catal. 188
(1999) 176–185.
[39] T. Tabakova, F. Boccuzzi, M. Manzoli, D. Andreeva, Appl. Catal. A 252 (2003)
385–397.
References
[1] M. Haruta, N. Yamada, T. Kobayashi, S. Iijima, J. Catal. 115 (1989) 301–309.
[2] G.C. Bond, C. Louis, D.T. Thompson, Catalysis by Gold, Imperial College Press,
London, 2006, 366.
[40] A.C. Bueno, J.A. Gonc¸ alves, E.V. Gusevskaya, Appl. Catal. A 329 (2007) 1–6.