318
P. Miedziak et al. / Catalysis Today 164 (2011) 315–319
Table 3
Benzyl alcohol oxidation performance after 4 h reaction for 1 wt.% Au–Pd/TiO2SIm catalysts prepared by sol-immobilisation method using three types of reactor systems.a
Entry
Reactor system
Selectivity (%)
Benzaldehyde
c
Benzoic acid
Benzyl benzoate
Toluene
DBEb
Benzene
TOF (h−1
)
1
2
3
Autoclave reactord
Radleys reactore
27.0
23.0
23.0
79.7
88.0
74.0
0.2
0.1
0.2
0.4
0.8
0.4
19.6
10.7
25.0
0.0
0.2
0.4
0.1
0.2
0.0
4900
5760
4830
Round bottom flaske
a
Reaction conditions: benzyl alcohol, T = 100 ◦C, pO2 = 1 bar, reaction time = 4 h.
b
c
DBE = dibenzyl ether.
Calculation of TOF (h-1) after 0.5 h of reaction. TOF numbers were calculated on the basis of total loading of metals.
Substrate/metal molar ratio = 58,580, stirring rate 1000 rpm.
d
e
Substrate/metal molar ratio = 56,100, stirring rate 1000 rpm.
Table 4
Benzyl alcohol oxidation results at iso-conversion for 1 wt.% Au–Pd/TiO2SIm catalysts prepared by sol-immobilisation method using three types of reactor systems.a
Entry
Reactor system
Selectivity (%)
Benzaldehyde
Benzoic acid
Benzyl benzoate
Toluene
DBEb
Benzene
1
2
3
Autoclave reactorc
Radleys reactord
15
15
15
76.7
89.8
72.0
0.2
0.1
0.0
0.6
0.9
0.0
22.4
8.8
28.0
0.0
0.2
0.0
0.1
0.2
0.0
Round bottom flaskd
a
Reaction conditions: benzyl alcohol, T = 100 ◦C, pO2 = 1 bar, reaction time = 4 h.
DBE = dibenzyl ether.
Substrate/metal molar ratio = 58,580, stirring rate 1000 rpm.
Substrate/metal molar ratio = 56,100, stirring rate 1000 rpm.
b
c
d
ison at iso-conversion (15%) showed that the highest selectivity
to benzaldehyde was observed using the Radleys reactor followed
observed with the low pressure glass reactor system can be ascribed
gen concentration in the solution the toluene formation increased
[33,34]. Especially, at low oxygen pressure (1 bar of oxygen) the
formation of toluene and benzaldehyde are highly sensitive to
the availability of the surface oxygen [34]. Nevertheless, we have
demonstrated that it is possible to obtain high selectivity together
with high catalytic activity using a Radleys reactor, which is pres-
surised and continually fed with oxygen as in the case of an
autoclave reactor. It is the availability of oxygen rather than the
materials of construction of the reactors evaluated which is the con-
trolling parameter that secures high selectivity to benzaldehyde.
Taking into account the above results it is important to maintain
the pressure of oxygen at 1 bar continually to obtain high selectivity
to benzaldehyde under the corresponding reaction conditions.
[4] B.A. Steinhoff, S.R. Fix, S.S. Stahl, J. Am. Chem. Soc. 124 (2002) 766.
[5] G.J. ten Brink, I.W.C.E. Arends, R.A. Sheldon, Science 287 (2000) 1636.
[6] G.J. ten Brink, I.W.C.E. Arends, R.A. Sheldon, Adv. Synth. Catal. 344 (2002) 355.
[7] R. Neumann, M. Gara, J. Am. Chem. Soc. 117 (1995) 5066.
[8] B.M. Choudary, M.L. Kantam, A. Rahman, C.V. Reddy, K.K. Rao, Angew. Chem.
Int. Ed. 40 (2001) 763.
[9] J.D. Chen, J. Dakka, E. Neeleman, R.A. Sheldon, J. Chem. Soc. Chem. Commun.
(1993) 1379.
[10] M. Musawir, P.N. Davey, G. Kelly, I.V. Kozhevnikov, Chem. Commun. (2003)
1414.
[11] T. Mallat, A. Baiker, Chem. Rev. 104 (2004) 3037.
[12] T. Mallat, A. Baiker, Catal. Today 19 (1994) 247.
[13] P. Gallezot, Catal. Today 37 (1997) 405.
[14] P. Vinke, D. deWit, A.T.J.W. de Goede, H. van Bekkum, New Developments in
Selective Oxidation by Heterogeneous Catalysis, Studies in Surface Science and
Catalysis, vol. 72, Elsevier, Amsterdam, 1992, pp. 1.
[15] M. Besson, P. Gallezot, Catal. Today 57 (2000) 127.
[16] A.F. Lee, J.J. Gee, H.J. Theyers, Green Chem. 2 (2000) 279.
[17] R. Anderson, K. Griffin, P. Johnston, P.L. Alsters, Adv. Synth. Catal. 345 (2003)
517.
[18] A. Abad, P. Conception, A. Corma, H. Garcia, Angew. Chem. Int. Ed. 44 (2005)
4066.
[19] A.S.K. Hashmi, G.J. Hutchings, Angew. Chem. Int. Ed. 45 (2006) 7896.
[20] N. Dimitratos, A. Villa, D. Wang, F. Porta, D. Su, L. Prati, J. Catal. 244 (2006) 113.
[21] G.J. Hutchings, Chem. Commun. (2008) 1148.
[22] C. Della Pina, E. Falletta, L. Prati, M. Rossi, Chem. Soc. Rev. 37 (2008) 2077, and
references cited therein.
[23] H. Miyamura, R. Matsubara, S. Kobayashi, Chem. Commun. (2008) 2031.
[24] Y.H. Ng, S. Ikeda, T. Harada, Y. Morita, M. Matsumura, Chem. Commun. (2008)
3181.
[25] C.D. Pina, E. Falletta, M. Rossi, J. Catal. 260 (2008) 384.
[26] A. Villa, N. Janjic, P. Spontoni, D. Wang, D.S. Su, L. Prati, Appl. Catal. A 364 (2009)
221.
[27] S. Marx, A. Baiker, J. Phys. Chem. C 113 (2009) 6191.
[28] C.Y. Ma, B.J. Dou, J.J. Li, J. Cheng, Q. Hu, Z.P. Hao, S.Z. Qiao, Appl. Catal. B: Environ.
92 (2009) 202.
4. Conclusions
We have demonstrated that simplified glass reactors can effec-
tively be used for the selective oxidation of benzyl alcohol with
high selectivity to benzaldehyde and high catalytic activity. The
utilisation of glass reactors at mild reaction conditions (low oxy-
gen pressure and low temperature) can suppress significantly the
financial cost of equipment and provide an accurate and easy way
of transforming alcohols to useful chemical intermediates.
[29] A. Villa, G.M. Veith, L. Prati, Angew. Chem. Int. Ed. 49 (2010) 4499.
[30] S. Carretin, P. McMorn, P. Johnston, K. Griffin, G.J. Hutchings, Chem. Commun.
(2002) 696.
[31] D.I. Enache, J.K. Edwards, P. Landon, B. Solsona-Espriu, A.F. Carley, A.A. Herzing,
M. Watanabe, C.J. Kiely, D.W. Knight, G.J. Hutchings, Science 311 (2006) 362.
[32] N. Dimitratos, J.A. Lopez-Sanchez, S. Meenakshisundaram, J.M. Anthonykutty,
G. Brett, A.F. Carley, S.H. Taylor, D.W. Knight, G.J. Hutchings, Green Chem. 11
(2009) 1209.
[33] N. Dimitratos, J.A. Lopez-Sanchez, D. Morgan, A.F. Carley, R. Tiruvalam, C.J. Kiely,
D. Bethell, G.J. Hutchings, Phys. Chem. Chem. Phys. 11 (2009) 5142.
[34] S. Meenakshisundaram, E. Nowicka, P.J. Miedziak, G.L. Brett, R.L. Jenkins, N.
Dimitratos, S.H. Taylor, D.W. Knight, D. Bethell, G.J. Hutchings, Faraday Discuss.
145 (2010) 341.
Acknowledgement
We thank the EPSRC for financial support.
References
[1] G. Cainelli, G. Cardillo, Chromium Oxidations in Organic Chemistry, Springer
Verlag, Berlin, 1984.
[35] P. Landon, P.J. Collier, A.J. Papworth, C.J. Kiely, G.J. Hutchings, Chem. Commun.
(2002) 2058.
[2] F.A. Luzzio, Organic Reactions, 53, Wiley, New York, 1998, p. 1.
[3] T.T. Tidwell, Organic Reactions, vol. 39, Wiley, New York, 1990, p. 297.