J. Tang et al. / Journal of Molecular Catalysis A: Chemical 355 (2012) 201–209
209
(benzaldehyde) was obtained (see Table 3, entry 2), implying that a
greater contribution should come from the radical route (pathway
c).
[11] E.M. McGarrigle, D.G. Gilheany, Chem. Rev. 105 (2005) 1565–1602.
[12] K.P. Ho, W.L. Wong, K.M. Lam, C.P. Lai, T.H. Chan, K.Y. Wong, Chem. Eur. J. 14
(2008) 7988–7996.
[13] S.H. Lee, L. Xu, B.K. Park, Y.V. Mironov, S.H. Kim, Y.J. Song, C. Kim, Y. Kim, S. Kim,
Chem. Eur. J. 16 (2010) 4678–4685.
These contrasting mechanistic behaviors can be rationalized on
[14] A. Murphy, A. Pace, T.D.P. Stack, Org. Lett. 6 (2004) 3119–3122.
[15] A. Murphy, T.D.P. Stack, J. Mol. Catal. A 251 (2006) 78–88.
[16] R.I. Kureshy, N.H. Khan, S.H.R. Abdi, I. Ahmad, S. Singh, R.V. Jasra, J. Catal. 221
(2004) 234–240.
[17] R.I. Kureshy, I. Ahmad, N.H. Khan, S.H.R. Abdi, S. Singh, P.H. Pandia, R.V. Jasra, J.
Catal. 235 (2005) 28–34.
[18] R.I. Kureshy, I. Ahmad, N.H. Khan, S.H.R. Abdi, K. Pathak, R.V. Jasra, J. Catal. 238
(2006) 134–141.
[19] N.J. Schoenfeldt, A.W. Korinda, J.M. Notestein, Chem. Commun. 46 (2010)
1640–1642.
[20] F. Song, C. Wang, J.M. Falkowski, L. Ma, W. Lin, J. Am. Chem. Soc. 132 (2010)
15390–15398.
[21] M. Moghadam, I. Mohammadpoor-Baltork, S. Tangestaninejad, V. Mirkhani, H.
Kargar, N. Zeini-Isfahani, Polyhedron 28 (2009) 3816–3822.
[22] S. Tangestaninejad, M. Moghadam, V. Mirkhani, I. Mohammadpoor-Baltork,
M.S. Saeedi, Appl. Catal. A: Gen. 381 (2010) 233–241.
the basis of the physical parameters of the substitutes on O
O
bond in these two oxidants (t-BuOOH and m-CPBA). The chloro-
phenyl group of m-CPBA has a stronger ability to withdraw electron
density from the peroxo unit alkyl group in t-BuOOH. This fea-
ture may result in an easy homolytic cleavage of the O O bond
(radical pathway) after the formation of a t-BuOO-MnII fragment,
while a heterolytic cleavage of the O O bond is dominant in the m-
CPBA case. This point can be confirmed by the rapid formation of
high valent Mn species (e.g., O MnIV intermediate) when m-CPBA
is used as oxidant (as suggested by the UV–vis results). Besides,
the type of solvent should be another key factor in influencing the
catalytic performance of 5. In our case, aprotic solvent like CH3CN
seems more suitable for the improvement of the catalytic perfor-
mance of 5.
[23] T.C.O. Mac Leod, V. Palaretti, V.P. Barros, A.L. Faria, T.A. Silva, M.D. Assis, Appl.
Catal. A: Gen. 361 (2009) 152–159.
[24] T.J. Terry, T.D.P. Stack, J. Am. Chem. Soc. 130 (2008) 4945–4953.
[25] M. Jia, A. Seifert, W.R. Thiel, Chem. Mater. 15 (2003) 2174–2180.
[26] M. Jia, A. Seifert, W.R. Thiel, J. Catal. 221 (2004) 319–324.
[27] J. Tang, L. Wang, G. Liu, Y. Liu, Y. Hou, W. Zhang, M. Jia, W.R. Thiel, J. Mol. Catal.
A: Chem. 313 (2009) 31–37.
4. Conclusion
Hybrid manganese-based mesoporous material, prepared by
covalent grafting of [MnII(1)2](OAc)2 (3) onto the surface of SBA-15,
is an efficient heterogeneous catalyst for the epoxidation of alkenes
(including terminal alkenes) with m-CPBA as the oxidant under
mild conditions. The catalytic performance of this hybrid catalyst
is solvent-dependent, relatively high catalytic activity and selec-
tivity to epoxides could be obtained when an aprotic solvent (e.g.,
CH3CN) is present. UV–vis measurements of the reaction of oxidant
in solution with homogeneous the [MnII(1)2](OAc)2 (3), revealed
that high-valent Mn species, which are easily formed when CH3CN
is used as the solvent, should be the main active intermediates for
the epoxidation reaction with m-CPBA as the oxidant.
[28] W.R. Thiel, M. Angstl, T. Priermeier, Chem. Ber. 127 (1994) 2373–2379.
[29] D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, J. Am. Chem. Soc. 120 (1998)
6024–6036.
[30] H. Zhang, Y. Wang, L. Zhang, G. Gerritsen, H.C.L. Abbenhuis Rutger, A. van San-
ten, C. Li, J. Catal. 256 (2008) 226–236.
[31] S. Gago, Y. Zhang, A.M. Santos, K. Köhler, F.E. Kühn, J.A. Fernandes, M. Pillinger,
A.A. Valente, T.M. Santos, P.J.A. Ribeiro-Claro, I.S. Gonc¸ alves, Micropor. Mesopor.
Mater. 76 (2004) 131–136.
[32] S.M. Bruno, J.A. Fernandes, L.S. Martins, I.S. Gonc¸ alves, M. Pillinger, P. Ribeiro-
Claro, J. Rocha, A.A. Valente, Catal. Today 114 (2006) 263–271.
[33] S. Gago, J.A. Fernandes, J.P. Rainho, R.A. Sá Ferreira, M. Pillinger, A.A. Valente,
T.M. Santos, L.D. Carlos, P.J.A. Ribeiro-Claro, I.S. Gonc¸ alves, Chem. Mater. 17
(2005) 5077–5084.
[34] A. Stein, M.H. Lim, Chem. Mater. 11 (1999) 3285–3295.
[35] S. McCann, M. McCann, R.M.T. Casey, M. Jackman, M. Devereux, V. McKee, Inorg.
Chim. Acta 279 (1998) 24–29.
[36] H.H. Monfared, V. Aghapoor, M. Ghorbanloo, P. Mayer, Appl. Catal. A: Gen. 372
(2010) 209–216.
Acknowledgment
[37] C. Hureau, G. Blondin, M. Charlot, C. Philouze, M. Nierlich, M. Césario, E.
Anxolabéhère-Mallart, Inorg. Chem. 44 (2005) 3669–3683.
[38] S. Groni, P. Dorlet, G. Blain, S. Bourcier, R. Guillot, E. Anxolabéhère-Mallart,
Inorg. Chem. 47 (2008) 3166–3172.
Financial support from the National Natural Science Foundation
of China (20773050, 21173100) is gratefully acknowledged.
[39] T. Kurahashi, A. Kikuchi, Y. Shiro, M. Hada, H. Fujii, Inorg. Chem. 49 (2010)
6664–6672.
References
[40] S. Romain, C. Duboc, F. Neese, E. Rivière, L.R. Hanton, A.G. Blackman, C. Philouze,
J.-C. Leprêtre, A. Deronzier, M.-N. Collomb, Chem. Eur. J. 15 (2009) 980–988.
[41] M. Hoogenraad, K. Ramkisoensing, W.L. Driessen, H. Kooijman, A.L. Spek, E.
Bouwman, J.G. Haasnoot, J. Reedijk, Inorg. Chim. Acta 320 (2001) 117–126.
[42] S. Biswas, K. Mitra, S.K. Chattopadhyay, B. Adhikary, Transition Met. Chem. 30
(2005) 393–398.
[43] R. van Gorkum, J. Berding, D.M. Tooke, A.L. Spek, J. Reedijk, E. Bouwman, J. Catal.
252 (2007) 110–118.
[44] R. Giovannetti, L. Alibabaei, F. Pucciarelli, Inorg. Chim. Acta 363 (2010)
1561–1567.
[45] J.T. Groves, M.K. Stern, J. Am. Chem. Soc. 110 (1988) 8628–8638.
[46] D. Feichtinger, D.A. Plattner, Angew. Chem. Int. Ed. Engl. 36 (1997) 1718–1719.
[47] W. Adam, K.J. Roschmann, C.R. Saha-Möller, D. Seebach, J. Am. Chem. Soc. 124
(2002) 5068–5073.
[48] K.P. Bryliakov, D.E. Babushkin, E.P. Talsi, J. Mol. Catal. A: Chem. 158 (2000)
19–35.
[1] Z. Xi, N. Zhou, Y. Sun, K. Li, Science 292 (2001) 1139–1141.
[2] G. Sienel, R. Rieth, K.T. Rowbottom, Ulmann’s Encyclopedia of Industrial Chem-
istry, 6th ed., Verlag Chemie, Weinheim, 2003, p. 269.
[3] A. Ansmann, R. Kawa, M. Neuss, Cosmetic composition containing hydrox-
yethers, US Patent 7,083,780 B2, Aug. 1, 2006, To Cognis Deutschland, Gmbh &
Co. KG.
[4] A.H. Hoveyda, Chem. Rev. 93 (1993) 1307–1370.
[5] D. Swern (Ed.), Organic Peroxides, vol. 1, J. Wiley & Sons, Inc., 1970, p. 654.
[6] W. Ye, R. Sangaiah, D.E. Degen, A. Gold, K. Jayaraj, K.M. Koshlap, G. Boysen, J.
Williams, K.B. Tomer, V. Mocanu, N. Dicheva, C.E. Parker, R.M. Schaaper, L.M.
Ball, J. Am. Chem. Soc. 131 (2009) 6114–6123.
[7] S. Quideau, G. Lyvinec, M. Marguerit, K. Bathany, A. Ozanne-Beaudenon, T. Buf-
feteau, D. Cavagnat, A. Chénedé, Angew. Chem. Int. Ed. 48 (2009) 4605–4609.
[8] B. Meunier, Chem. Rev. 92 (1992) 1411–1456.
[9] J.T. Groves, M.K. Stern, J. Am. Chem. Soc. 109 (1987) 3812–3814.
[10] M. Palucki, P.J. Pospisil, W. Zhang, E.N. Jacobsen, J. Am. Chem. Soc. 116 (1994)
9333–9334.