oxidative esterification is also successful in an intramolecular
manifold. The reaction provides a catalytic route toward the
construction of 3-arylphthalides.
In summary, we have developed a novel palladium catalyst
system for oxidative esterification reactions of primary
benzylic alcohols that focus on the findings of catalytic activity
of bismuth and PMHS in this reaction. This silver-free catalyst
system for the oxidative esterification has several advantages
of high yields, ligand-free, environmentally benign, direct use
of air atmosphere as terminal oxidant or avoiding the use of
oxygen balloon, and the reaction efficiency is high.
The authors gratefully thank the financial support of the
National Natural Science Foundation of China (NSFC, No.
2
0973051 and 21173064) and Program for Excellent Young
Teachers in Hangzhou Normal University (HNUEYT, JTAS
011-01-014).
2
Notes and references
1
2
Selected reviews: (a) K. Muniz, Angew. Chem., Int. Ed., 2009, 48,
412–9423; (b) K. M. Gligorich and M. S. Sigman, Chem.
Commun., 2009, 3854–3867; (c) S. S. Stahl, Angew. Chem., Int.
Ed., 2004, 43, 3400–3420; (d) Y. Izawa, D. Pun and S. S. Stahl,
Science, 2011, 333, 209–213.
Recent examples: (a) Z. Z. Shi, C. Zhang, C. H. Tang and N. Jiao,
Chem. Soc. Rev., 2012, 41, 3381–3430; (b) C. Pan, X. Jia and
J. Cheng, Synlett, 2012, 357–366; (c) S. Iwahana, H. Iida and
E. Yashima, Chem.–Eur. J., 2011, 17, 8009–8013; (d) K. Takenaka,
M. Akita, Y. Tanigaki, S. Takizawa and H. Sasai, Org. Lett., 2011,
9
Scheme 2 Oxidative esterification of benzylic alcohols catalyzed by
palladium/bismuth in the presence of PMHS.
13, 3506–3509; (e) T. Yasukawa, H. Miyamura and S. Kobayashi,
Chem.–Asian J., 2011, 6, 621–627.
3
(a) S. Gowrisankar, H. Neumann and M. Beller, Angew. Chem.,
Int. Ed., 2011, 50, 5139–5143; (b) C. Liu, J. Wang, L. K. Meng,
Y. Deng, Y. Li and A. W. Lei, Angew. Chem., Int. Ed., 2011, 50,
5144–5148.
Scheme 3 Synthesis of 3-aryl phthalides via oxidative esterification.
À1
the cheapest metal salts (0.9 RMB or 0.0014 USD g ), which
4
5
Handbook of Organopalladium Chemistry for Organic Synthesis, ed.
E. i. Negishi, Wiley-Interscience, New York, 2002, p. 2853.
(a) D. Troegel and J. Stohrer, Coord. Chem. Rev., 2011, 255,
1440–1459; (b) R. Malacea, R. Poli and E. Manoury, Coord.
Chem. Rev., 2010, 254, 729–752; (c) S. Diez-Gonzalez and
S. P. Nolan, Acc. Chem. Res., 2008, 41, 349–358; (d) A. K. Roy,
Adv. Organomet. Chem., 2008, 55, 1–59.
Recent examples: (a) R. H. Morris, Chem. Soc. Rev., 2009, 38,
2282–2291; (b) D. Addis, S. Das, K. Junge and M. Beller, Angew.
Chem., Int. Ed., 2011, 50, 6004–6011.
would make the present palladium catalyst system more
practically useful in organic synthesis.
With the optimized conditions, a variety of benzylic
alcohols were examined by using bimetallic Pd/Bi in the
presence of PMHS. To our delight, the oxidative esterification
of various benzylic alcohols proceeded with remarkably high
yields and excellent selectivities in 2 hrs. The scope of
the bismuth and PHMS-accelerated Pd-catalyzed oxidative
esterification is depicted in Scheme 2. Unsubstituted benzylic
alcohol gave the desired product 2d smoothly and excellent
isolated yield was obtained (84%). No aldehdye was observed
in this case. For electron-donating group substituted aromatic
alcohols, all runs demonstrated complete oxidative esterifica-
tion in excellent selectivities to provide the corresponding
esters (up to 95%). For the strong electron-withdrawing
groups, such as a nitro moiety, the conversion was incomplete
in two hours and the isolated yield of the corresponding
ester 3d was moderate (58%). In addition, halide-containing
benzylic and allylic alcohols also resulted in complete conversion
with excellent selectivities.
6
7
Selected examples, (a) L. H. Sommer and J. E. Lyons, J. Am.
Chem. Soc., 1967, 89, 1521–1522; (b) L. H. Sommer and
J. D. Citron, J. Org. Chem., 1967, 32, 2470–2472;
(c) L. H. Sommer and J. E. Lyons, J. Am. Chem. Soc., 1969, 91,
7
061–7067; (d) M. A. Brook, Silicon in Organic, Organometallic,
and Polymer Chemistry, John Wiley & Sons, New York, 2000.
(a) B. P. S. Chauhan, J. S. Rathore, M. Chauhan and A. Krawicz,
J. Am. Chem. Soc., 2003, 125, 2876–2877; (b) P. S. Chauhan,
Bhanu, S. R. Jitendra and B. Tariq, J. Am. Chem. Soc., 2004, 126,
8
9
8
493–8500.
The excellent catalytic activity of Pd@polysiloxane in this oxida-
tion reaction maybe due to the structural specificity of the possible
8
‘‘polysiloxane-palladium’’ nanocomposite (also see Fig. S1, ESIw).
1
0 (a) C. Liu, S. Tang, L. Zheng, D. Liu, H. Zhang and A. Lei,
Angew. Chem., Int. Ed., 2012, 51, 5662–5666; (b) G. Heropoulos
and C. Villalonga-Barber, Tetrahedron Lett., 2011, 52, 5319–5322.
Phthalides are important building blocks in the field of
11 Recent examples: (a) J. Liu, F. Li, E. L. Kim, J. L. Li, J. Hong,
K. S. Bae, H. Y. Chung, H. S. Kim and J. H. Jung, J. Nat. Prod.,
1
1
medicinal chemistry and organic synthesis. Thus we expanded
the scope of this oxidative esterification to include diols that led
to selective oxidation and intramolecular esterification. As
shown in Scheme 2 (3l) and Scheme 3, this palladium-catalyzed
2
011, 74, 1826–1829; (b) D. H. T. Phan, B. Kim and V. M. Dong,
J. Am. Chem. Soc., 2009, 131, 15608–15609; (c) Z. S. Ye, G. L. Lv,
W. H. Wang, M. L. Zhang, M. L. Zhang and J. Cheng, Angew.
Chem., Int. Ed., 2010, 49, 3671–3674.
8
594 Chem. Commun., 2012, 48, 8592–8594
This journal is c The Royal Society of Chemistry 2012