3756
Y. S. Angelis et al. / Tetrahedron Letters 42 (2001) 3753–3756
diradical- or dipolar-type transition state TSII and TSIII,
as shown in Scheme 3.
References
1. (a) Adam, W.; Curci, R.; Edwards, J. O. Acc. Chem.
Res. 1989, 22, 205; (b) Murray, R. W. Chem. Rev. 1989,
89, 1187.
2. Mello, R.; Cassidei, L.; Fiorentino, M.; Fusko, C.;
Hummer, W.; Jaeger, V.; Curci, R. J. Am. Chem. Soc.
1991, 113, 2205.
In the transition states TSII and TSIII, the hyperconjuga-
tive effect of the five hydrogen atoms in 6-d0 versus the
five deuterium atoms in 6-d5 are expected to give a
substantial normal secondary IE (kH/kD:1.03–1.1 per
deuterium atom), as found in the oxidation of propanol
by organo ruthenium(III) complexes10 and in the dipolar
cycloadditions of TCNE to 2,4-dimethylhexadiene.11
3. Adam, W.; Prechtl, F.; Richter, M. J.; Smerz, A. K.
Tetrahedron Lett. 1993, 34, 8427.
4. Kova˘c, F.; Baumstark, A. L. Tetrahedron Lett. 1995, 35,
8751.
The results are consistent with a concerted mechanism,
as shown in TSI (Scheme 3). In the nonpolar transition
state TSI, the steric interactions in going from a less
crowded ground state to a more crowded transition state
would lead to a small inverse secondary IE, as found.
This inverse b-secondary isotope effect is comparable to
previously calculated12 or measured ones for other reac-
tions,13 which were taken as support for a concerted
mechanism.
5. Shustov, G. V.; Rauk, A. J. Org. Chem. 1998, 63, 5413.
6. (a) Adam, W.; Chantu, R.; Saha-Moeller, C. R.; Zhao,
C. G. J. Org. Chem. 1999, 64, 7492; (b) Bovicelli, P.;
Lupatelli, P.; Saneti, A.; Mincione, E. Tetrahedron Lett.
1994, 35, 8477; (c) Curci, R.; D’Accolti, L.; Detomaso,
A.; Fusko, C.; Takeuchi, K.; Ohga, Y.; Eaton, P. E.;
Yip, Y. C. Tetrahedron Lett. 1993, 34, 4559; (d) Bovi-
celli, P.; Lupatelli, P.; Saneti, A.; Mincione, E. Tetra-
hedron Lett. 1995, 36, 3031; (e) D’Acolti, L.; Detomaso,
A.; Fusko, C.; Rosa, A.; Curci, R. J. Org. Chem. 1993,
58, 3600.
The small amount of a-hydroxy acetophenone (2–3%),
which was observed previously4 in the DMD oxidation
of 1-phenylethanol and confirmed by us, may be formed
by a minor radical-chain process, which is irrelevant to
the major concerted oxidation mechanism. Thus, in
conclusion, the present isotope effects (primary and
b-secondary), when taken in conjunction, exclude the
formation of any diradical- or dipolar-type intermediate
and suggest a concerted transition state for the DMD
oxidation of alcohols.
7. Angelis, Y.; Zhang, X.; Orfanopoulos, M. Tetrahedron
Lett. 1996, 37, 5991.
8. (a) Melander, S.; Saunders, W. H. Reaction Rates of
Isotopic Molecules; Wiley–Interscience: New York, 1980;
(b) Carpenter, B. K. Determination of Organic Reaction
Mechanism; Wiley–Interscience: New York, 1984.
9. Higgins, R.; Foote, C. S.; Cheng, H. ACS Chem. Ser.
1968, 77, 102–117.
10. Thompson, M. S.; Meyer, T. J. J. Am. Chem. Soc. 1982,
104, 4106.
11. Vassilikogiannakis, G.; Orfanopoulos, M. Tetrahedron
Lett. 1996, 37, 3075.
Acknowledgements
12. (a) Houk, K. N.; Gonzalez, J.; Li, Y. Acc. Chem. Res.
1995, 28, 81; (b) Wiest, O.; Houk, K. N.; Black, K. A.;
Tomas, IV, B. J. Am. Chem. Soc. 1995, 117, 8594.
13. Mattson, O.; Westway, K. C. Adv. Phys. Org. Chem.
1996, 31, 143.
We thank the Greek Secretariat of Research and Tech-
nology (PENED 1999 to I.S. and PENED 1999 to M.O.)
for financial support and for a research fellowship to
Y.S.A. and N.S.H. Professor W. Adam is also acknowl-
edged for valuable comments.
.