8
88
A. Fujiya et al.
LETTER
Karimi, N.; Saidi, M. R.; Primo, A.; Varma, R. S.; Luque, R.
Adv. Synth. Catal. 2012, 354, 1707. (g) Anand, N.; Reddy,
K. H. P.; Rao, K. S. R.; Burri, D. R. Catal. Lett. 2011, 141,
Miura, T.; Itoh, A. Synlett 2010, 2335. (e) Nakayama, H.;
Itoh, A. Tetrahedron Lett. 2007, 48, 1131. (f) Nakayama, H.;
Itoh, A. Chem. Pharm. Bull. 2006, 54, 1620.
1
355. (h) Wang, A.; Jiang, H. J. Org. Chem. 2010, 75, 2321.
(16) (a) Nobuta, T.; Fujiya, A.; Hirashima, S.; Tada, N.; Miura,
T.; Itoh, A. Tetrahedron Lett. 2012, 53, 5306. (b) Hirashima,
S.; Nobuta, T.; Tada, N.; Miura, T.; Itoh, A. Org. Lett. 2011,
13, 2576.
(17) Itoh, A.; Kodama, T.; Masaki, Y.; Inagaki, S. Synlett 2002,
522.
(
(
(
5) Wu, X.; Davis, A. P.; Fry, A. J. Org. Lett. 2007, 9, 5633.
6) Miao, C.-X.; Yu, B.; He, L.-N. Green Chem. 2011, 13, 541.
7) Miyamoto, K.; Sei, Y.; Yamaguchi, K.; Ochiai, M. J. Am.
Chem. Soc. 2009, 131, 1382.
8) (a) Photochemistry of Organic Compounds: From Concepts
to Practice; Klán, P.; Wirz, J., Eds.; John Wiley & Sons:
New York, 2009. (b) Hoffmann, N. Chem. Rev. 2008, 108,
(
(18) Hirashima, S.; Kudo, Y.; Nobuta, T.; Tada, N.; Itoh, A.
Tetrahedron Lett. 2009, 50, 4328.
1
052.
(19) Conversions of alkenes into aldehydes in the presence of
iodine under aerobic photooxidative conditions have been
reported previously, see: (a) Hewgill, F. R. Aust. J. Chem.
1994, 47, 461. (b) Liu, L.; Yang, B.; Katz, T. J.; Poindexter,
N. K. J. Org. Chem. 1991, 56, 3769.
(
9) For recent reviews, see: (a) Punniyamurthy, T.; Velusamy,
S.; Iqbal, J. Chem. Rev. 2005, 105, 2329. (b) Mallat, T.;
Baiker, A. Chem. Rev. 2004, 104, 3037. (c) Stahl, S. S.
Angew. Chem. Int. Ed. 2004, 43, 3400. (d) Piera, J.;
Backvall, J.-E. Angew. Chem. Int. Ed. 2008, 47, 3506.
(20) Photooxidation; Typical Procedure
(
(
10) Bhalerao, U.; Sridhar, M. Tetrahedron Lett. 1993, 34, 4341.
11) (a) Yuan, Z.; Zheng, S.; Zeng, Y.; Chen, J.; Han, Y.; Li, Y.;
Li, Y. New J. Chem. 2010, 34, 718. (b) Fu, X.-G.; Zhang, L.-
P.; Wu, L.-Z.; Tung, C.-H. J. Photosci. 2003, 10, 175. (c) Li,
H.-R.; Wu, L.-Z.; Tung, C.-H. Tetrahedron 2000, 56, 7437.
12) Murthy, R. S.; Bio, M.; You, Y. Tetrahedron Lett. 2009, 50,
A solution of trans-4,4′-di-tert-butylstilbene (1a) (0.15
mmol), I (0.015 mmol), and TFA (0.03 mmol) in dry
2
MeOH–EtOAc (1:2 mL) was stirred in a Pyrex test-tube
under air (open), and externally irradiated with four 22 W
fluorescent lamps for 20 h. The mixture was quenched with
aq Na S O solution and extracted with EtOAc (3 × 5 mL).
(
(
2
2
3
1041.
The combined organic layer was washed with brine (20 mL)
13) (a) Feng, K.; Peng, M.-L.; Wang, D.-H.; Zhang, L.-P.; Tung,
C.-H.; Wu, L.-Z. Dalton Trans. 2009, 9794. (b) Feng, K.;
Zhang, R.-Y.; Wu, L.-Z.; Tu, B.; Peng, M.-L.; Zhang, L.-P.;
Zhao, D.; Tung, C.-H. J. Am. Chem. Soc. 2006, 128, 14685.
14) Baucherel, X.; Uziel, J.; Juge, S. J. Org. Chem. 2001, 66,
and aq HCl (2 M, 2 × 20 mL), dried over MgSO and
4
concentrated in vacuo. Purification of the crude residue by
column chromatography (hexane–EtOAc, 50:1) provided 4-
tert-butylbenzaldehyde (2a) (41.1 mg, 84%).
(
(
(21) For heterolytic carbon–carbon bond cleavage reactions of
hydroperoxides in methanol, see: Utaka, M.; Fujita, Y.;
Takeda, A. Chem. Lett. 1982, 1607.
(22) Homolytic carbon–carbon bond cleavage reactions of
hydroperoxides cannot be ruled out, see: Gu, X.; Zhang, W.;
Salomon, R. G. J. Org. Chem. 2012, 77, 1554.
4504.
15) (a) Nobuta, T.; Fujiya, A.; Tada, N.; Miura, T.; Itoh, A.
Synlett 2012, 23, 2975. (b) Tada, N.; Ishigami, T.; Cui, L.;
Ban, K.; Miura, T.; Itoh, A. Tetrahedron Lett. 2013, 54, 256.
(c) Kanai, N.; Nakayama, H.; Tada, N.; Itoh, A. Org. Lett.
2010, 12, 1948. (d) Nobuta, T.; Hirashima, S.; Tada, N.;
Synlett 2014, 25, 884–888
© Georg Thieme Verlag Stuttgart · New York