Edge Article
Chemical Science
measurements. To the solution were added a solution of Et3N
(3.0 equiv.) in MeCN and aer stirring for 2 min a solution of
H2O2 (1.2 equiv.) in MeCN. The spectral change was recorded in
the range of 400–900 nm. The decrease of 3 was monitored at
several different wavelengths. The rst-order rate constants
(kobs) were obtained from ts of ꢁln(At ꢁ AN/A0 ꢁ AN) vs. time.
The spontaneous decomposition rate of 3 was obtained in the
absence of a substrate as shown above. Here, trans-b-methyl-
styrene was used as a substrate, and the decomposition rate of 3
was measured in the presence of the substrate at the several
different concentrations in the range of 25–200 ꢂ 10ꢁ3 M. For
the measurements of the activation energy of decomposition of
3, the amount of H2O2 was reduced from 1.2 to 0.8 eq. to
6 B. J. Brazeau, R. N. Austin, C. Tarr, J. T. Groves and
J. D. Lipscomb, J. Am. Chem. Soc., 2001, 123,
11831.
´
7 (a) L. J. Murray, S. G. Naik, D. O. Ortillo, R. Garcıa-Serres,
J. K. Lee, B. H. Huynh and S. J. Lippard, J. Am. Chem. Soc.,
2007, 129, 14500; (b) A. D. Bochevarov, J. Li, W. J. Song,
R. A. Friesner and S. J. Lippard, J. Am. Chem. Soc., 2011,
133, 7384.
8 (a) I. Siewert and C. Limberg, Chem. - Eur. J., 2009, 15, 10316;
(b) S. Friedle, E. Reisner and S. J. Lippard, Chem. Soc. Rev.,
2010, 39, 2768.
9 J. R. Hagadorn, L. Que and W. B. Tolman, J. Am. Chem. Soc.,
1998, 120, 13531.
decrease the concentration of free H2O2 in the reaction mixture 10 E. C. Carson and S. J. Lippard, J. Am. Chem. Soc., 2004, 126,
because catalase activity of 3 strongly affected the rate of 3412.
decomposition at higher temperatures.ꢀ The measurements 11 X. Zhang, H. Furutachi, S. Fujinami, S. Nagatomo, Y. Maeda,
were carried out at ꢁ10, ꢁ8, ꢁ6, and ꢁ4 C.
Y. Watanabe, T. Kitagawa and M. Suzuki, J. Am. Chem. Soc.,
2005, 127, 826.
¨
12 S. Friedle, J. J. Kodanko, A. T. Morys, T. Hayashi, P. Moenne-
Quantum mechanical calculations
Loccoz and S. J. Lippard, J. Am. Chem. Soc., 2009, 131,
14508.
All the DFT calculations were carried out at the spin-unre-
stricted PBE1KCIS/6-31G* level of theory24 implemented in the
Gaussian09 (ref. 25) suite of programs. The initial geometries
were retrieved from the X-ray crystal structure. The stationary
states were conrmed by frequency analysis and the transition
state was characterized by one imaginary frequency and their
relative motion towards the reactant and product side. The zero-
point energy (ZPE) correction was also applied to the energy of
all the reported structures.
13 (a) M. Kodera, M. Itoh, K. Kano, T. Funabiki and M. Reglier,
Angew. Chem., Int. Ed., 2005, 44, 7104; (b) M. Kodera,
Y. Kawahara, Y. Hitomi, T. Nomura, T. Ogura and
Y. Kobayashi, J. Am. Chem. Soc., 2012, 134, 13236.
14 (a) J. C. Price, E. W. Barr, B. Tirupati, J. M. Bollinger and
C. Krebs, Biochemistry, 2003, 42, 7497; (b) C. Krebs,
´
D. Galonic Fujimori, C. T. Walsh and J. M. Bollinger, Acc.
Chem. Res., 2007, 40, 484.
15 (a) J. England, M. Martinho, E. R. Farquhar, J. R. Frisch,
¨
E. L. Bominaar, E. Munck and L. Que, Angew. Chem., Int.
Acknowledgements
Ed., 2009, 48, 3622; (b) J. England, Y. Guo, K. M. Van
This work was supported by a Grant-in-Aid for Scientic Research
B (no. 21350037) from the Ministry of Education, Culture, Sports,
Science and Technology, Japan and by “Creating Research Center
for Advanced Molecular Biochemistry”, Strategic Development of
Research Infrastructure for Private Universities, the Ministry of
Education, Culture, Sports, Science and Technology, (MEXT)
Japan. The author appreciates to Dr Hiroyasu Sato at Rigaku
Corporation for determination of crystal structures of 2a and 2b,
and to Dr Shinji Kitao at Kyoto University Research Reactor
Heuvelen, M. A. Cranswick, G. T. Rohde, E. L. Bominaar,
¨
E. Munck and L. Que, J. Am. Chem. Soc., 2011, 133, 11880;
(c) D. C. Lacy, R. Gupta, K. L. Stone, J. Greaves, J. W. Ziller,
M. P. Hendrich and A. S. Borovik, J. Am. Chem. Soc., 2010,
132, 12188; (d) J. P. Bigi, W. H. Harman, B. Lassalle-Kaiser,
D. M. Robles, T. A. Stich, J. Yano, R. D. Britt and
C. J. Chang, J. Am. Chem. Soc., 2012, 134, 1536.
16 G. Xue, A. Pokutsa and L. Que, J. Am. Chem. Soc., 2011, 133,
16657.
¨
Institute for measurements of part of the Mossbauer spectra.
17 A. Hazell, K. B. Jensen, C. J. McKenzie and H. Tolund,
J. Chem. Soc., Dalton Trans., 1993, 3249.
18 A. T. Fiedler, X. Shan, M. P. Mehn, J. Kaizer, S. Torelli,
J. R. Frisch, M. Kodera and L. Que Jr, J. Phys. Chem. A,
2008, 112, 13037.
Notes and references
1 D. M. Kurtz Jr, JBIC, J. Biol. Inorg. Chem., 1997, 2, 159.
¨
2 (a) L. Shu, J. C. Nesheim, K. Kauffmann, E. Munck, 19 (a) K. Kim and S. J. Lippard, J. Am. Chem. Soc., 1996, 118,
J. D. Lipscomb and L. Que, Science, 1997, 275, 515; (b)
C. E. Tinberg and S. J. Lippard, Acc. Chem. Res., 2011, 44, 280.
3 (a) W. J. Song, M. S. McCormick, R. K. Behan, M. H. Sazinsky,
W. Jiang, J. Lin, C. Krebs and S. J. Lippard, J. Am. Chem. Soc.,
4914; (b) Y. Dong, Y. Zang, L. Shu, E. C. Wilkinson, L. Que
¨
Jr, K. Kauffmann and E. Munck, J. Am. Chem. Soc., 1997,
119, 12683; (c) M. Kodera, M. Itoh, K. Kano and
T. Funabiki, Bull. Chem. Soc. Jpn., 2006, 79, 252.
2010, 132, 13582; (b) W. J. Song and S. J. Lippard, 20 A. M. Valentine, P. Tavares, A. S. Pereira, R. Davydov,
Biochemistry, 2011, 50, 5391.
4 L. J. Bailey and B. G. Fox, Biochemistry, 2009, 48, 8932.
C. Krebs, B. M. Hoffman, D. E. Edmondson, B. H. Huynh
and S. J. Lippard, J. Am. Chem. Soc., 1998, 120, 2190.
¨
5 V. V. Vu, J. P. Emerson, M. Martinho, Y. S. Kim, E. Munck, 21 (a) M. Costas, M. P. Mehn, M. P. Jensen and L. Que, Chem.
M. H. Park and L. Que, Proc. Natl. Acad. Sci. U. S. A., 2009,
106, 14814.
Rev., 2004, 104, 939; (b) G. Xue, D. Wang, R. De Hont,
¨
A. T. Fiedler, X. Shan, E. Munck and L. Que, Proc. Natl.
This journal is © The Royal Society of Chemistry 2014
Chem. Sci., 2014, 5, 2282–2292 | 2291