1
2
Aerobic Catalytic Photooxidation of
Olefins by an Electron-Deficient Pacman
Bisiron(III) µ-Oxo Porphyrin
Oxygen atom transfer (OAT) from porphyrin as with
other metal-oxo platforms1
3-15
is preferred for the side-
on approach of substrate to the metal-oxygen bond. The
architecture of the cofacial cleft, formed from attaching
the diiron(III) µ-oxo bisporphyrins to a single rigid pillar,
can sterically confine substrate attack to the electroni-
cally favored side-on geometry. Traditional cofacial bispor-
Joel Rosenthal, Bradford J. Pistorio,
Leng Leng Chng, and Daniel G. Nocera*
Department of Chemistry, 6-335, Massachusetts Institute of
Technology, 77 Massachusetts Avenue,
phyrin systems, however, have little vertical flexibility
Cambridge, Massachusetts 02139-4307
16,17
(
ca. 1 Å),
and consequently pose the complication that
the photogenerated terminal metal oxo is difficult to
access by substrate. To circumvent this problem, we have
synthesized cofacial bisporphyrins bearing a dibenzofu-
Received August 16, 2004
18-20
ran (DPD) spacer,
which exhibits significant vertical
flexibility.2 X-ray crystallography establishes that the
diiron(III) µ-oxo DPD complex, (DPD)Fe O, is a clamped
the metal-metal distance of the (DPD)Fe
1,22
2
spring:2
3,24
2
O
complex is 3.5 Å whereas the metal-metal distance of
the relaxed DPD pocket is >7.5 Å. We have shown by
transient absorption spectroscopy25 that the strongly
clamped DPD Pacman is opened by photocleavage of the
III
III
Fe-O bond, induced by excitation of the Fe -O-Fe
core. A superior photocatalytic activity of the DPD
framework, as compared to traditional xanthene or
anthracene bridged Pacman porphyrins (ca. 10000-fold)
is derived from the presentation of an extended cofacial
cleft, enabling the ferryl intermediate to be accessed
easily by substrate from a side-on approach. To date, the
photocatalytic cycle has been turned over with easily
oxidized substrates (e.g., phosphines and sulfides) owing
to the modest redox potential of the etioporphyrin ferryl
subunit.2
The synthesis and oxygen atom transfer (OAT) photoreac-
tivity of a diiron(III) µ-oxo meso-tripentafluorophenyl bispor-
phyrin appended to a dibenzofuran spacer are presented.
Reaction of 4,6-diformyldibenzofuran under standard Lind-
sey conditions furnishes the parent cofacial porphyrin
architecture in a single step. These cofacial porphyrins
photocatalyze the oxidation of sulfides and olefins using
visible light and molecular oxygen as the terminal oxidant.
High turnover numbers reflect the enhanced stability of the
electron-deficient diiron(III) µ-oxo bisporphyrin core ap-
pended to a dibenzofuran spacer under aerobic conditions.
6,27
It is known that the oxidizing power of metalloporphy-
rins can be increased by introducing electron-withdraw-
28,29
ing groups onto the porphyrin periphery.
Toward this
(
10) Balch, A. L.; Chan, Y.-W.; Cheng, R.-J.; La Mar, G. N.; Latos-
Grazynski, L.; Renner, M. W. J. Am. Chem. Soc. 1984, 106, 7779.
(
11) Balch, A. L. Inorg. Chim. Acta 1992, 198-200, 297.
Diiron bisporphyrins may utilize O
oxidation without the need for an external co-reductant.
2
for substrate
(12) Groves, J. T.; Myers, R. S. J. Am. Chem. Soc. 1983, 107, 5791.
(13) Veige, A. S.; Slaughter, L. M.; Wolczanski, P. T.; Matsunaga,
N.; Decker, S. A.; Cundari, T. R. J. Am. Chem. Soc. 2001, 123, 6419.
1
-8
The overall cycle relies on a photon to cleave the ther-
(
14) Jacobsen, E. N. Acc. Chem. Res. 2000, 33, 421.
mally inert Fe-O bonds of a diiron(III) µ-oxo bisporphy-
(15) Brock, S. L.; Mayer, J. M. Inorg. Chem. 1991, 30, 2138.
(16) Collman, J. P.; Wagenknecht, P. S.; Hutchinson, J. E. Angew.
Chem., Int. Ed. Engl. 1994, 33, 1537.
II
IV
rin to generate a geminal PFe /PFe dO pair (P )
porphyrin). The active catalyst, the ferryl intermediate,
is capable of oxygenating substrates with the concomitant
formation of two equivalents of reduced iron(II) porphy-
rin. Reaction of the two separate ferrous porphyrin
(
17) Chang, C. K.; Liu, H. Y.; Abdalmuhdi, I. J. Am. Chem. Soc.
1984, 106, 2725.
18) Chang, C. J.; Yeh, C.-Y.; Nocera, D. G. J. Org. Chem. 2002, 67,
403.
19) Chng, L. L.; Chang, C. J.; Nocera, D. G. J. Org. Chem. 2003,
(
1
(
9-11
subunits with O
2
reforms the diiron(III) µ-oxo complex
68, 4075.
(
20) Chang, C. J.; Deng, Y.; Heyduk, A. F.; Chang, C. K.; Nocera,
for re-entry into a photocatalytic cycle.
D. G. Inorg. Chem. 2000, 39, 959.
(
21) Chang, C. J.; Deng, Y.; Shi, C.; Chang, C. K.; Anson, F. C.;
(
1) Richman, R. M.; Peterson, M. W. J. Am. Chem. Soc. 1982, 104,
795.
2) Peterson, M. W.; Rivers, D. S.; Richman, R. M. J. Am. Chem.
Nocera, D. G. Chem. Commun. 2000, 1355.
(22) Chang, C. J.; Loh, Z.-H.; Shi, C.; Anson, F. C.; Nocera, D. G. J.
Am. Chem. Soc. 2004, 126, 10013.
5
(
Soc. 1985, 107, 2907.
(23) Deng, Y.; Chang, C. J.; Nocera, D. G. J. Am. Chem. Soc. 2000,
122, 410.
(
3) Peterson, M. W.; Richman, R. M. Inorg. Chem. 1985, 24, 722.
4) Ercolani, C.; Gardini, M.; Pennesi, G.; Rossi, G. Chem. Commun.
(
(24) Chang, C. J.; Loh, Z.-H.; Deng, Y.; Nocera, D. G. Inorg. Chem.
2003, 42, 8262.
1
1
983, 549.
(
5) Weber, L.; Haufe, G.; Rehorek, D.; Hennig, H. Chem. Commun.
991, 502.
6) Weber, L.; Hommel, R.; Behling, J.; Haufe, G.; Hennig, H. J.
(25) Hodgkiss, J. M.; Chang, C. J.; Pistorio, B. J.; Nocera, D. G.
Inorg. Chem. 2003, 42, 8270.
(
(26) Pistorio, B. J.; Chang, C. J.; Nocera, D. G. J. Am. Chem. Soc.
2002, 124, 7884.
Am. Chem. Soc. 1994, 116, 2400.
(
(
7) Hennig, H.; Luppa, D. J. Prakt. Chem. 1999, 341, 757.
(27) Chang, C. J.; Baker, E. A.; Pistorio, B. J.; Deng, Y.; Loh, Z.-H.;
Miller, S. E.; Carpenter, S. D.; Nocera, D. G. Inorg. Chem. 2002, 41,
3102.
8) Hendrickson, D. N.; Kinnaird, M. G.; Suslick, K. S. J. Am. Chem.
Soc. 1987, 109, 1243.
(
9) Latos-Grazynski, L.; Cheng, R.-J.; La Mar, G. N.; Balch, A. L.
(28) Neya, S.; Funasaki, N. J. Heterocycl. Chem. 1997, 34, 689.
(29) Woller, E. K.; DiMagno, S. G. J. Org. Chem. 1997, 62, 1588.
J. Am. Chem. Soc. 1982, 104, 5992.
1
0.1021/jo048570v CCC: $30.25 © 2005 American Chemical Society
Published on Web 02/09/2005
J. Org. Chem. 2005, 70, 1885-1888
1885