New Journal of Chemistry
DOI: 10.1039/C4NJ01869A
R. Mülhaupt, O. Riant, S. Hermans, J. Barthel and C. Janiak, Carbon,
2014, 66, 285.
6 (a) R. S. Dey and C. R. Raj, J. Phys. Chem. C., 2010, 114, 21427; (b) Z.
Wen, S. Ci and J. Li, J. Phys. Chem. C., 2009, 113, 13482.
(a) M. Bouallega, S. Norsic, D. Baudouin, R. Sayah, E. A. Quadrelli, Jꢀ
M. Basset, JꢀP. Candy, P. Delichere, K. Pelzer, L. Veyre and C.
Thieuleux, J. Catal., 2011, 284, 184; (b) M. Xie, F. Zhang, Y. Long
and J. Ma, RSC Adv., 2013, 3, 10329; (c) M. Chatterjee, Y. Ikushima
and F. Zhao, New J. Chem., 2003, 27, 510; (d) H. Bönnemann, W.
Wittholt, J. D. Jentsch and A. S. Tilling, New J. Chem., 1998, 22,
Conclusion
6
6
7
7
8
8
0
5
0
5
0
5
In conclusion, we used NaBH4 and EG as classical reducing
agent to successfully prepare highly dispersed different diameters
of Pt nanoparticles supported on PPyꢀcoated Fe O . As expected,
the chemical reduction methods remarkably affected the size of
Pt nanoparticles about 5.5nm and 2.5nm, respectively. The
prepared catalysts exhibited high catalytic activity and good
stability for aerobic oxidation of benzylic alcohols and
hydrogenation reduction of nitroaromatics. It was highlighted that
7
3
4
5
0
5
0
5
0
—
7
13; (e) Y. Liu, J. Chung, Y. Jang, S. Mao, B. M. Kim, Y. Wang and
X. Guo, ACS Appl. Mater. Interfaces, 2014, 6, 1887; (f) N.
Musselwhite and G. A. Somorjai, Top. Catal., 2013, 56, 1277; (g) J.
J. H. B. Sattler, A. M. Beale and B. M. Weckhuysen, Phys. Chem.
Chem. Phys., 2013, 15, 12095; (h) J. Zhu, T. Wang, X. Xu, P. Xiao
and J. Li, Appl. Catal. B: Environ., 2013, 130-131, 197.
1
1
2
2
3
Fe O @PPyꢀPt(EG) afforded a higher conversion for benzylic
3 4
alcohols aerobic oxidation, while the selectivity toward
benzaldehyde over these two catalysts was similar. However,
catalytic performances for hydrogenation reduction of a majority
of nitroaromatics of two catalysts were almost the same. More
8 Q. Zhang, W. Deng and Y. Wang, Chem. Commun., 2011, 47, 9275.
9
(a) J. M. ClementeꢀJuan, E. Coronado and A. GaitaꢀAriñ, Chem. Soc.
Rev., 2012, 41, 7464; (b) M. ClementeꢀLeón, E. Coronado, C. Martíꢀ
Gastaldoz and F. M. Romero, Chem. Soc. Rev., 2011, 40, 473; (c) E.
Coronado and G. M. Espallargas, Chem. Soc. Rev., 2013, 42, 1525;
(d) J. P. Malrieu, R. Caballol, C. J. Calzado, C. Graaf and N.
Guihéry, Chem. Rev., 2014, 114, 429; (e) J. Thévenot, H. Oliveira, O.
Sandre and S. Lecommandoux, Chem. Soc. Rev., 2013, 42, 7099; (f)
XꢀY. Wang, C. Avendaño and K. R. Dunbar, Chem. Soc. Rev., 2011,
40, 3213; (g) J. Yuan, Y. Xu and A. H. E. Müller, Chem. Soc. Rev.,
2011, 40, 640.
interesting, Fe O @PPyꢀPt(NaBH ) gave better activities of
3
4
4
several nitroaromatics which were relatively difficult to
be hydrotreated under the same conditions. Furthermore, both
catalysts could be recycled 5 times for the two reactions, while
less than 10% loss of conversion after recycle reactions is
observed. And because of the agglomeration of small Pt
nanoparticles, the EG reduced Fe O @PPyꢀPt catalyst exhibited
3
4
slightly poorer stability than the NaBH reduced Fe O @PPyꢀPt
4
3
4
1
1
0 (a) M. A. M. Gijs, F. Lacharme and U. Lehmann, Chem. Rev., 2010,
catalyst in the recycle tests. Our work demonstrated the important
role of reducing agents for immobilizing Pt nanoparticles. It also
could be obtained that size effects might be quietly different for
different kinds of reactions. Sometimes, superior crystal structure
was probably more meaningful than smaller size diameter for a
certain kind of reaction. It is surely that preparing smaller metal
nanoparticles with prefect crystal structure and avoiding
interaction agglomeration can greatly improve catalytic activities.
1
2
10, 1518; (b) J. H. Jung, J. H. Lee and S. Shinkai, Chem. Soc. Rev.,
011, 40, 4464; (c) S. Laurent, D. Forge, M. Port, A. Roch, C. Robic,
L. V. Elst and R. N. Muller, Chem. Rev., 2008, 108, 2064; (d) AꢀH.
Lu, E. L. Salabas and F. Schüth, Angew. Chem. Int. Ed., 2007, 46,
90
95
1
4
222; (e) Y. Pan, X. Du, F. Zhao and B. Xu, Chem. Soc. Rev., 2012,
1, 2912; (f) L. H. Reddy, J. Arias, J. Nicolas and P. Couvreur,
Chem. Rev., 2012, 112, 5818.
1 (a) R. AbuꢀReziq, D. Wang, M. Post and H. Alper, Chem. Mater.,
2008, 20, 2544; (b) Y. Q. Wang, B. F. Zou, T. Gao, X. P. Wu, S. Y.
Lou and S. M. Zhou, J. Mater. Chem., 2012, 22, 9034; (c) L. Gai, X.
Han, Y. Hou, J. Chen, H. Jiang and X. Chen, Dalton Trans., 2013,
Acknowledgements
4
2, 1820; (d) V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M.
Bouhrara and J. M. Basset, Chem. Rev., 2011, 111, 3036.
00 12 (a) Y. Long, M. Xie, J. Niu, P. Wang and J. Ma, Appl. Surf. Sci., 2013,
77, 288; (b) J. Niu, M. Liu, P. Wang, Y. Long, M. Xie, R. Li and J.
The authors are grateful to the Key Laboratory of Nonferrous
Metals Chemistry and Resources Utilization, Gansu Province for
financial support.
1
1
2
Ma, New J. Chem., 2014, 38, 1471; (c) J. Niu, M. Xie, X. Zhu, Y.
Long, P. Wang, R. Li and J. Ma, J. Mol. Catal. A: Chem., 2014, 392,
2
47; (d) P. Wang, F. Zhang, Y. Long, M. Xie, R. Li and J. Ma, Catal.
3
5
References
05
Sci. Technol., 2013, 3, 1618; (e) P. Wang, H. Liu, M. Liu, R. Li and
J. Ma, New J. Chem., 2014, 38, 1138; (f) X. Zhu, J. Niu, F. Zhang, J.
Zhou, X. Li and J. Ma, New J. Chem., 2014, 38, 4622.
1
(a) A. T. Bell, Science, 2003, 299, 1688; (b) R. A. van Santen, Acc.
Chem. Res., 2009, 42, 57; (c) G. A. Somorjai and J. Y. Park, Angew.
Chem. Int. Ed., 2008, 47, 9212; (d) G. A. Somorjai, H. Frei and J. Y.
Park, J. Am. Chem. Soc., 2009, 131, 16589.
13 (a) J. Kugai, S. Seino, T. Nakagawa and T. A. Yamamoto, J.
Nanopart. Res., 2014, 16, 2275; (b) N. Hickey, P. Fornasiero, J.
Kašpar, M. Graziani, G. Blanco and S. Bernal, Chem. Commun.,
2000, 357; (c) C. K. Rhee, BꢀJ. Kim, C. Ham, YꢀJ. Kim, K. Song and
K. Kwon, Langmuir, 2009, 25, 7140; (d) T. Wang, H. Shou, Y. Kou
and H. Liu, Green Chem., 2009, 11, 562; (e) J. Xing, Y. H. Li, H. B.
Jiang, Y. Wang and H. G. Yang, Int. J. Hydrogen Energ., 2014, 39,
1237; (f) C. Zhou, H. Chen, Y. Yan, X. Jia, CꢀJ. Liu and Y. Yang,
Catal. Today, 2013, 211, 104.
4
4
5
5
0
5
0
5
2 (a) S. F. Chen, J. P. Li, K. Qian, W. P. Xu, Y. Lu, W. X. Huang and S. 110
H. Yu, Nano Res., 2010, 3, 244; (b) L. De Rogatis, M. Cargnello, V.
Gombac, B. Lorenzut, T. Montini, P. Fornasiero, ChemSusChem,
2
010, 3, 24; (c) M. Nasrollahzadeh, New J. Chem., 2014, 38, 5544;
d) L. Tian, T. M. Cronin and Y. Weizmann, Chem. Sci., 2014, 5,
4153; (e) G. A. Somorjai and J. Y. Park, Chem. Soc. Rev., 2008, 37, 115
155.
(
2
3
4
G. Liu, M. J. ArellanoꢀJiménez, C. B. Carter and A. G. Agrios, J.
Nanopart. Res., 2013, 15, 1744.
14 K. Cheah, M. Forsyth and V. T. Truong, Synth. Met., 1998, 94, 215.
15 (a) Y. H. Ng, S. Ikeda, T. Harada, Y. Morita and M. Matsumura, Chem.
Commun., 2008, 3181. (b) A. Ohtaka, Y. Kono, S. Inui, S.
Yamamoto, T. Ushiyama, O. Shimomura and R. Nomura, J. Mol.
Catal. A: Chem., 2012, 360, 48.
(a) Y. Bing, H. Liu, L. Zhang, D. Ghosh and J. Zhang, Chem. Soc. Rev.,
2010, 39, 2184; (b) S. Pande, M. G. Weir, B. A. Zaccheo and R. M. 120
Crooks, New J. Chem., 2011, 35, 2054; (c) M. Giovanni, H. L. Poh,
A. Ambrosi, G. Zhao, Z. Sofer, F. Šaněk, B. Khezri, R. D. Webster
and M. Pumera, Nanoscale, 2012, 4, 5002; (d) Y. Nie, S. Chen, W.
Ding, X. Xie, Y. Zhang and Z. Wei, Chem. Commun., 2014, DOI:
10.1039/C4CC06781A.
5
(a) O. Tomita, B. Ohtani and R. Abe, Catal. Sci. Technol., 2014, 4,
3
2
850; (b) R. Li, W. Chen, H. Kobayashi and C. Ma, Green Chem.,
010, 12, 212; (c) D. Marquardt, F. Beckert, F. Pennetreau, F. Töle,
This journal is © The Royal Society of Chemistry [year]Journal Name, [year], [vol], 00–00
|
7