COMMUNICATIONS
Formation of Carbonyl Compounds from Amines
Biophys. 2005, 433, 279; c) K. E. Cassimjee, M. S.
Humble, V. Miceli, C. G. Colomina, P. Berglund, ACS
Catal. 2011, 1, 1051; d) N. J. Turner, Chem. Rev. 2011,
111, 4073.
[3] L. J. Cseke, A. Kirakosyan, P. B. Kaufman, S. Warber,
J. A. Duke, H. L. Brielmann, in: Natural Products from
nd
Plants, 2 edn., CRC Press, 2006.
[
[
4] G. Tojo, M. Fernµndez, Oxidation of Alcohols to Alde-
hydes and Ketones, 1 edn., Springer, New York, 2006.
5] For previous reports on oxidation of amine to carbonyl,
st
see: a) F. F. Stephens, J. D. Bower, J. Chem. Soc. 1949,
2971; b) K. Nakagawa, H. Onoue, J. Sugita, Chem.
Pharm. Bull. 1964, 12, 1135; c) S. S. Rawalay, H. J.
Schechter, Org. Chem. 1967, 32, 3129; d) R. J. Audette,
J. W. Quail, P. J. Smith, Tetrahedron Lett. 1971, 12, 279;
e) T. F. Buckley, H. Rapoport, J. Am. Chem. Soc. 1982,
Scheme 4. Proposed mechanism for the CÀN bond cleavage
reaction.
1
04, 4446; f) K. Orito, T. Hatakeyama, M. Takeo, S.
ing out oxidative CÀN bond cleavage of primary, sec-
ondary, and tertiary amines. These processes, which
are promoted by visible light irradiation, efficiently
generate carbonyl compounds. Finally, this process
can be employed in a methodology for deblocking N-
PMB protected amides.
Uchiito, M. Tokuda, H. Suginome, Tetrahedron 1998,
54, 8403; g) N. A. Noureldin, J. W. Bellegarde, Synthesis
1999, 939; h) A. Miyazawa, K. Tanaka, T. Sakakura, M.
Tashiro, H. Tashiro, G. K. S. Prakash, G. A. Olah,
Chem. Commun. 2005, 2104; i) S. Sobhani, M. F.
Maleki, Synlett 2010, 383; j) S. Desjardins, G. Jacque-
mot, S. Canesi, Synlett 2012, 23, 1497; k) H. K. Chaud-
hari, V. N. Telvekar, Synth. Commun. 2013, 43, 1155.
ÀH activation of amines, see:
Experimental Section
[6] Some reports on a-C
a) K. R. Campos, Chem. Soc. Rev. 2007, 36, 1069;
b) J. A. Bexrud, P. Eisenberger, D. C. Leitch, P. R.
Payne, L. L. Schafer, J. Am. Chem. Soc. 2009, 131,
General Procedure
An oven-dried re-sealable tube, equipped with a magnetic
stir bar, was charged with an amine or amide (0.5/
2116; c) M. T. Richers, M. Breugst, A. Yu. Platonova,
A. Ullrich, A. Dieckmann, K. N. Houk, D. Seidel, J.
Am. Chem. Soc. 2014, 136, 6123; d) W. Chen, Y. K.
Kang, R. G. Wilde, D. Seidel, Angew. Chem. 2014, 126,
1
.0 mmol), Ru(bpy) Cl2 (1 mol%), K S O (1.0 equivalent)
3 2 2 8
and MeCN/H O (1:1, 0.1M). The tube was stoppered with
2
a silicone septum screw-cap and placed under blue LEDs at
room temperature. After 12 h irradiation, the tube was
opened and the contents were diluted with ethylacetate/
hexane. After aqueous work-up, the organic layers were
combined, dried over MgSO4 and concentrated under
vacuum to give a residue that was subjected to flash column
chromatography to give the desired product.
5
279; Angew. Chem. Int. Ed. 2014, 53, 5179.
[
7] Some reviews on visible light photocatalysis, see:
a) T. P. Yoon, M. A. Ischay, J. Du, Nat. Chem. 2010, 2,
527; b) J. M. R. Narayanam, C. R. J. Stephenson, Chem.
Soc. Rev. 2011, 40, 102; c) J. Xuan, W.-J. Xiao, Angew.
Chem. 2012, 124, 6934; Angew. Chem. Int. Ed. 2012, 51,
6828; d) M. Reckenthäler, A. G. Griesbeck, Adv. Synth.
Catal. 2013, 355, 2727; e) C. K. Prier, D. A. Rankic,
D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322; f) T.
Nol, X. Wang, V. Hessel, Chim. Oggi 2013, 31, 10.
8] Some examples on photoredox catalysis including our
work, see: a) D. A. Nicewicz, D. W. C. MacMillan, Sci-
ence 2008, 322, 77; b) M. A. Ischay, M. E. Anzovino, J.
Du, T. P. Yoon, J. Am. Chem. Soc. 2008, 130, 12886;
c) J. M. R. Narayanam, J. W. Tucker, C. R. J. Stephen-
son, J. Am. Chem. Soc. 2009, 131, 8756; d) S. Lin,
M. A. Ischay, C. G. Fry, T. P. Yoon, J. Am. Chem. Soc.
Acknowledgements
[
This work was supported by the National Research Founda-
tion of Korea (NRF) [NRF-2014R1A1A1A05003274, NRF-
2014-011165, and NRF-2012M3A7B4049657] and the TJ Sci-
ence Fellowship of the POSCO TJ Park Foundation.
2
011, 133, 19350; e) J. D. Nguyen, E. M. D’Amato,
J. M. R. Narayanam, C. R. J. Stephenson, Nat. Chem.
012, 4, 854; f) N. Iqbal, S. Choi, E. Kim, E. J. Cho, J.
References
2
[
1] a) M. C. de La Torre, M. A. Sierra, Angew. Chem. 2004,
Org. Chem. 2012, 77, 11383; g) C. Yu, K. Lee, Y. You,
E. J. Cho, Adv. Synth. Catal. 2013, 355, 1471; h) X.
Wang, G. D. Cuny, T. Nol, Angew. Chem. 2013, 125,
8014; Angew. Chem. Int. Ed. 2013, 52, 7860; i) C. Yu,
N. Iqbal, S. Park, E. J. Cho, Chem. Commun. 2014, 50,
12884; j) J. Jung, E. Kim, Y. You, E. J. Cho, Adv. Synth.
Catal. 2014, 356, 2741; k) N. Iqbal, J. Jung, S. Park, E. J.
Cho, Angew. Chem. 2014, 126, 549; Angew. Chem. Int.
Ed. 2014, 53, 539; l) W. J. Choi, S. Choi, K. Ohkubo,
116, 162; Angew. Chem. Int. Ed. 2004, 43, 160; b) R. A.
Yoder, J. N. Johnston, Chem. Rev. 2005, 105, 4730; c) J.
Piera, J.-E. Bäckvall, Angew. Chem. 2008, 120, 3558;
Angew. Chem. Int. Ed. 2008, 47, 3506; d) R. A. Scheck,
M. T. Dedeo, A. T. Iavarone, M. B. Francis, J. Am.
Chem. Soc. 2008, 130, 11762.
[2] For transaminases, see: a) J.-S. Shin, B.-G. Kim, J. Org.
Chem. 2002, 67, 2848; b) M. D. Toney, Arch. Biochem.
Adv. Synth. Catal. 2015, 357, 2187 – 2192
ꢀ 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2191