Paper
RSC Advances
composites exhibit greatly enhanced photocatalytic activity 18 S. Liang, L. Wen, S. Lin, J. Bi, P. Feng, X. Fu and L. Wu,
than pristine WO2.72 in both the oxygen evolution from water Angew. Chem., 2014, 126, 2995–2999.
splitting and selective oxidation of benzyl alcohol. The promo- 19 G. Xi, J. Ye, Q. Ma, N. Su, H. Bai and C. Wang, J. Am. Chem.
tion effects of RGO support are dependent on RGO loadings and
the optimized RGO loading is determined to be 5% in WO2.72
Soc., 2012, 134, 6508–6511.
20 H. Bai, N. Su, W. Li, X. Zhang, Y. Yan, P. Li, S. Ouyang, J. Ye
and G. Xi, J. Mater. Chem. A, 2013, 1, 6125–6129.
/
RGO nano-composite. For WO2.72/RGO with RGO weight
loading of 5%, oxygen evolution rate of 420 mmol g hꢀ1 and 21 P. Wu, W. Zhu, A. Wei, B. Dai, Y. Chao, C. Li, H. Li and S. Dai,
ꢀ1
benzyl alcohol oxidation rate of 10.8 mmol gcat hꢀ1 can be
Chem.–Eur. J., 2015, 21, 15421–15427.
¨
obtained under UV-vis light, namely 2.8 and 4.0 times higher 22 F. Bottger-Hiller, R. Lungwitz, A. Seifert, M. Hietschold,
than pristine WO2.72 nanoparticles, respectively. The concept of
using RGO as a support with good electron conducting prop-
M. Schlesinger, M. Mehring and S. Spange, Angew. Chem.,
Int. Ed., 2009, 48, 8878–8881.
erties should be a general strategy to the fabrication of efficient 23 Y. Zhang, Y.-W. Tan, H. L. Stormer and P. Kim, Nature, 2005,
compositing photocatalysts.
438, 201–204.
24 A. K. Geim and K. S. Novoselov, Nat. Mater., 2007, 6, 183–191.
25 M. J. Allen, V. C. Tung and R. B. Kaner, Chem. Rev., 2009, 110,
132–145.
Acknowledgements
This work is nancially supported by the National High Tech- 26 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang,
nology Research and Development Program of China
(2015AA033303), the National Natural Science Foundation of
Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov,
Science, 2004, 306, 666–669.
China (21421001 and 21303087), Municipal Natural Science 27 O. C. Compton and S. T. Nguyen, Small, 2010, 6, 711–723.
Foundation of Tianjin (13RCGFGX01124, 13JCQNJC05900 and 28 O. C. Compton, Z. An, K. W. Putz, B. J. Hong, B. G. Hauser,
14JCQNJC05700), and the Ministry of Education of China
(IRT13022).
L. C. Brinson and S. T. Nguyen, Carbon, 2012, 50, 3399–3406.
29 Q. Xiang, J. Yu and M. Jaroniec, Chem. Soc. Rev., 2012, 41,
782–796.
30 B. Chai, J. Li, Q. Xu and K. Dai, Mater. Lett., 2014, 120, 177–
Notes and references
181.
1 A. Fujishima, Nature, 1972, 238, 37–38.
2 A. Kudo and Y. Miseki, Chem. Soc. Rev., 2009, 38, 253–278.
31 J. Qin, M. Cao, N. Li and C. Hu, J. Mater. Chem., 2011, 21,
17167–17174.
3 T. Hisatomi, J. Kubota and K. Domen, Chem. Soc. Rev., 2014, 32 M. Zhou, J. Yan and P. Cui, Mater. Lett., 2012, 89, 258–261.
43, 7520–7535.
33 J. Guo, Y. Li, S. Zhu, Z. Chen, Q. Liu, D. Zhang, W.-J. Moon
4 S. J. A. Moniz, Energy Environ. Sci., 2015, 8, 731–759.
and D.-M. Song, RSC Adv., 2012, 2, 1356–1363.
5 L. Li, J. Yan, T. Wang, Z.-J. Zhao, J. Zhang, J. Gong and 34 X. An, C. Y. Jimmy, Y. Wang, Y. Hu, X. Yu and G. Zhang, J.
N. Guan, Nat. Commun., 2015, 6, 5881.
6 S. Wang and X. Wang, Small, 2015, 11, 3097–3112.
7 S. Wang, W. Yao, J. Lin, Z. Ding and X. Wang, Angew. Chem.,
Int. Ed., 2014, 53, 1034–1038.
8 S. Wang, Z. Ding and X. Wang, Chem. Commun., 2015, 51,
1517–1519.
9 S. Wang, Y. Hou and X. Wang, ACS Appl. Mater. Interfaces,
2015, 7, 4327–4335.
10 S. Wang and X. Wang, Angew. Chem., Int. Ed., 2016, 55, 2308–
2320.
Mater. Chem., 2012, 22, 8525–8531.
35 X. Li, S. Yang, J. Sun, P. He, X. Xu and G. Ding, Carbon, 2014,
78, 38–48.
36 B. Li, X. Shao, T. Liu, L. Shao and B. Zhang, Appl. Catal., B,
2016, 198, 325–333.
37 W. S. Hummers Jr and R. E. Offeman, J. Am. Chem. Soc., 1958,
80, 1339.
38 D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii,
Z. Sun, A. Slesarev, L. B. Alemany, W. Lu and J. M. Tour,
ACS Nano, 2010, 4, 4806–4814.
11 D. Chen, L. Gao, A. Yasumori, K. Kuroda and Y. Sugahara, 39 Z.-F. Huang, J.-J. Zou, L. Pan, S. Wang, X. Zhang and
Small, 2008, 4, 1813–1822.
L. Wang, Appl. Catal., B, 2014, 147, 167–174.
12 J. Yan, T. Wang, G. Wu, W. Dai, N. Guan, L. Li and J. Gong, 40 L. Tang, Y. Wang, Y. Li, H. Feng, J. Lu and J. Li, Adv. Funct.
Adv. Mater., 2015, 27, 1580–1586. Mater., 2009, 19, 2782–2789.
13 Z.-F. Huang, J. Song, L. Pan, F. Lv, Q. Wang, J.-J. Zou, 41 D. K. Padhi and K. Parida, J. Mater. Chem. A, 2014, 2, 10300–
X. Zhang and L. Wang, Chem. Commun., 2014, 50, 10959–
10962.
14 G. Xi, S. Ouyang, P. Li, J. Ye, Q. Ma, N. Su, H. Bai and
C. Wang, Angew. Chem., Int. Ed., 2012, 51, 2395–2399.
15 D. Wang, J. Sun, X. Cao, Y. Zhu, Q. Wang, G. Wang, Y. Han,
100312.
42 D. K. Padhi, K. Parida and S. K. Singh, J. Phys. Chem. C, 2015,
119, 6634–6646.
43 J. Paredes, S. Villar-Rodil, A. Martınez-Alonso and J. Tascon,
´
Langmuir, 2008, 24, 10560–10564.
G. Lu, G. Pang and S. Feng, J. Mater. Chem. A, 2013, 1, 8653– 44 M. Fernandez-Merino, L. Guardia, J. Paredes, S. Villar-Rodil,
8657.
P. Solis-Fernandez, A. Martinez-Alonso and J. Tascon, J. Phys.
Chem. C, 2010, 114, 6426–6432.
45 D. Lu, J. Chen, J. Zhou, S. Deng, N. Xu and J. Xu, J. Raman
Spectrosc., 2007, 38, 176–180.
16 Z.-F. Huang, J. Song, L. Pan, X. Jia, Z. Li, J.-J. Zou, X. Zhang
and L. Wang, Nanoscale, 2014, 6, 8865–8872.
17 F. E. Osterloh, Chem. Soc. Rev., 2013, 42, 2294–2320.
This journal is © The Royal Society of Chemistry 2017
RSC Adv., 2017, 7, 2606–2614 | 2613