Organic Letters
Letter
Scheme 5. Plausible Pathway and Transition State
REFERENCES
■
(1) (a) Smith, T. E.; Djang, M.; Velander, A. J.; Downey, C. W.;
Carroll, K. A.; van Alphen, S. Org. Lett. 2004, 6, 2317−2320. (b) Li,
H.; Tatlock, J.; Linton, A.; Gonzalez, J.; Borchardt, A.; Dragovich, P.;
Jewell, T.; Prins, T.; Zhou, R.; Blazel, J.; Parge, H.; Love, R.; Hickey,
M.; Doan, C.; Shi, S.; Duggal, R.; Lewis, C.; Fuhrman, S. Bioorg. Med.
Chem. Lett. 2006, 16, 4834−4838. (c) Clarke, P. A.; Santos, S.;
Martin, W. H. C. Green Chem. 2007, 9, 438−440. (d) Zacharia, J. T.;
Tanaka, T.; Hayashi, M. J. Org. Chem. 2010, 75, 7514−7518.
(e) Clarke, P. A.; Santos, S.; Mistry, N.; Burroughs, L.; Humphries, A.
C. Org. Lett. 2011, 13, 624−627. (f) Clarke, P. A.; Nasir, N. M.;
Sellars, P. B.; Peter, A. M.; Lawson, C. A.; Burroughs, J. L. Org.
Biomol. Chem. 2016, 14, 6840−6852. (g) Clarke, P. A.; Sellars, P. B.;
Nasir, N. M. Org. Biomol. Chem. 2015, 13, 4743−4750. (h) Stokker,
G. E.; Hoffman, W. F.; Alberts, A. W.; Cragoe, E. J., Jr.; Deana, A. A.;
Gilfillan, J. L.; Huff, J. W.; Novello, F. C.; Prugh, J. D. J. Med. Chem.
1985, 28, 347−358. (i) Roth, B. D.; Ortwine, D. F.; Hoefle, M. L.;
Stratton, C. D.; Sliskovic, D. R.; Wilson, M. W.; Newton, R. S. J. Med.
Chem. 1990, 33, 21−31. (j) Chan, C.; Bailey, E. J.; Hartley, C. D.;
Hayman, D. F.; Hutson, J. L.; Inglis, G. G. A.; Jones, P. S.; Keeling, S.
E.; Kirk, B. E. J. Med. Chem. 1993, 36, 3646−3657. (k) Puppala, M.;
Narayanapillai, S. C.; Leitzman, P.; Sun, H.; Upadhyaya, P.;
O’Sullivan, M. G.; Hecht, S. S.; Xing, C. J. Med. Chem. 2017, 60,
7935−7940. (l) Tenenbaum, J. M.; Morris, W. J.; Custar, D. W.;
Scheidt, K. A. Angew. Chem., Int. Ed. 2011, 50, 5892−5895.
(m) Egger, J.; Bretscher, P.; Freigang, S.; Kopf, M.; Carreira, E. M.
Angew. Chem., Int. Ed. 2013, 52, 5382−5385. (n) Cheng, H.; Zhang,
Z.; Yao, H.; Zhang, W.; Yu, J.; Tong, R. Angew. Chem., Int. Ed. 2017,
56, 9096−9100.
enolate formation at γ-position of 1a occurs, the enolate is
more reactive than the enolate of the α-position of 1a.6b
In summary, we have accomplished the direct asymmetric
synthesis of δ-hydroxy-β-ketoesters through regio- and
enantioselective aldol reactions of isatins with β-ketoesters
catalyzed by quinidine-derived thiourea catalyst. In these
reactions, the C−C bond formed selectively at the γ-position of
β-ketoesters. A series of 3-alkyl-3-hydroxyoxindoles containing
a δ-hydroxy-β-ketoester motif were synthesized in excellent
yields with high enantioselectivity. Both enantiomers of the
products were obtained by the use of pseudoenantiomers of
the cinchona-derived catalysts. The aldol method that affords
δ-hydroxy-β-ketoesters described here will be useful for the
development of biologically active compounds.
(2) (a) Thompson, C. M.; Green, D. L. C. Tetrahedron 1991, 47,
4223−4285. (b) Langer, P.; Freiberg, W. Chem. Rev. 2004, 104,
4125−4150. (c) Langer, P.; Freifeld, I.; Shojaei, H. Chem. Commun.
2003, 3044−3045. (d) Bjerketorp, J.; Levenfors, J. J.; Sahlberg, C.;
̈
Nord, C. L.; Andersson, P. F.; Guss, B.; Oberg, B.; Broberg, A. J. Nat.
Prod. 2017, 80, 2997−3002. (e) Kang, T.; Jo, D.; Han, S. J. Org.
Chem. 2017, 82, 9335−9341. (f) Jo, D.; Han, S. Org. Chem. Front.
̌
2017, 4, 506−509. (g) Smrcek, J.; Pohl, R.; Jahn, U. Org. Biomol.
Chem. 2017, 15, 9408−9414.
ASSOCIATED CONTENT
* Supporting Information
(3) (a) Langer, P. Synthesis 2002, 2002, 441−459. (b) Denmark, S.
E.; Heemstra, J. R., Jr.; Beutner, G. L. Angew. Chem., Int. Ed. 2005, 44,
4682−4698. (c) Casiraghi, G.; Battistini, L.; Curti, C.; Rassu, G.;
Zanardi, F. Chem. Rev. 2011, 111, 3076−3154. (d) Pansare, S. V.;
Paul, E. K. Chem. - Eur. J. 2011, 17, 8770−8779. (e) Evans, D. A.;
Black, W. C. J. Am. Chem. Soc. 1993, 115, 4497−4513. (f) Evans, D.
A.; Hu, E.; Burch, J. D.; Jaeschke, G. J. Am. Chem. Soc. 2002, 124,
5654−5655. (g) Singer, R. A.; Carreira, E. M. J. Am. Chem. Soc. 1995,
117, 12360−12361. (h) Clarke, P. A.; Ermanis, K. Org. Lett. 2012, 14,
5550−5553. (i) Mikame, Y.; Yoshida, K.; Hashizume, D.; Hirai, G.;
Nagasawa, K.; Osada, H.; Sodeoka, M. Chem. - Eur. J. 2019, 25,
3496−3500.
■
S
The Supporting Information is available free of charge on the
Detailed experimental procedures; analytical data for all
AUTHOR INFORMATION
Corresponding Authors
■
(4) (a) Benetti, S.; Romagnoli, R.; De Risi, C.; Spalluto, G.;
Zanirato, V. Chem. Rev. 1995, 95, 1065−1114. (b) Govender, T.;
Arvidsson, P. I.; Maguire, G. E. M.; Kruger, H. G.; Naicker, T. Chem.
Rev. 2016, 116, 9375−9437.
(5) A racemic version of organo-base catalyzed aldol reactions of β-
ketoesters with isatins to access δ-hydroxy-β-ketoesters has been
reported: Thakur, P. B.; Sirisha, K.; Sarma, A. V. S.; Nanubolu, J. B.;
Meshram, H. M. Tetrahedron 2013, 69, 6415−6423.
(6) (a) Zhang, D.; Tanaka, F. Adv. Synth. Catal. 2015, 357, 3458−
3462. (b) Zhang, D.; Tanaka, F. Org. Lett. 2017, 19, 3803−3086.
(c) Zhang, D.; Johnson, S.; Cui, H. L.; Tanaka, F. Asian J. Org. Chem.
2014, 3, 391−394.
(7) Examples of aldol reactions catalyzed by cinchona-thiourea
derivatives: (a) Guo, Q.; Bhanushali, M.; Zhao, C.-G. Angew. Chem.,
Int. Ed. 2010, 49, 9460−9464. (b) Allu, S.; Molleti, N.; Panem, R.;
Singh, V. K. Tetrahedron Lett. 2011, 52, 4080−4083. (c) Liu, H.; Wu,
H.; Luo, Z.; Shen, J.; Kang, G.; Liu, B.; Wan, Z.; Jiang, J. Chem. - Eur.
J. 2012, 18, 11899−11903. (d) Zu, L.; Wang, J.; Li, H.; Xie, H.; Jiang,
W.; Wang, W. J. Am. Chem. Soc. 2007, 129, 1036−1037. (e) Singh, R.
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank Prof. Shuyu Zhang at Shanghai Jiaotong University
for helping us with the optical rotation measurements. This
study was supported by Anhui Provincial Natural Science
Foundation (No. 1908085MB33) (to D.Z.), by the Anhui
University of Technology (to D.Z.) and by Okinawa Institute
of Science and Technology Graduate University (to F.T.).
D
Org. Lett. XXXX, XXX, XXX−XXX