Paper
RSC Advances
14 X. F. Chen, J. S. Zhang, X. Z. Fu, M. Antonietti and
X. C. Wang, J. Am. Chem. Soc., 2009, 131, 11658–11659.
15 Y. Wang, J. S. Zhang, X. C. Wang, M. Antonietti and H. R. Li,
Angew. Chem., Int. Ed., 2010, 122, 3428–3431.
16 X. H. Li, X. C. Wang and M. Antonietti, ACS Catal., 2012, 2,
2082–2086.
17 F. Z. Su, S. C. Mathew, G. Lipner, X. Z. Fu, M. Antonietti,
S. Blechert and X. C. Wang, J. Am. Chem. Soc., 2010, 132,
16299–16301.
18 S. C. Yan, Z. S. Li and Z. G. Zou, Langmuir, 2009, 25, 10397–
10401.
19 H. Zhao, H. Yu, X. Quan, S. Chen, Y. Zhang, H. Zhao and
H. Wang, Appl. Catal., B, 2014, 152–153, 46–50.
20 X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan and Y. Xie, J. Am.
Chem. Soc., 2013, 135, 18–21.
4. Conclusions
In summary, the g-C3N4 nanosheets were prepared by a simple
thermal oxidative etching process. Thermal oxidative etching
time has a signicant effect on the exfoliation process of g-C3N4,
lamellar thickness, morphology evolutions and chemical state
of nitrogen on the g-C3N4. As a metal-free heterogeneous cata-
lyst, the g-C3N4 NS-3 h nanosheet shows more superior catalytic
performance for the epoxidation of styrene to styrene oxide than
that of the bulk g-C3N4 and other recently reported metal-free
materials. The thin lamellar structure with large specic
surface area and pore volume, graphitic nitrogen in g-C3N4
nanosheets contribute to the superior catalytic performance.
The optimal styrene conversion and epoxide selectivity reach
81.2% and 82.2%, respectively. The possible reaction mecha-
nism is proposed on the basis of the unique properties of
graphitic nitrogen and the free radical theory. This nding put
forward a new and eco-friendly methodology for olen epoxi-
dation using the metal-free catalysts.
21 X. Chen, J. Zhang, X. Fu, M. Antonietti and X. C. Wang, J. Am.
Chem. Soc., 2009, 131, 11658–11659.
22 P. Niu, L. L. Zhang, G. Liu and H. M. Cheng, Adv. Funct.
Mater., 2012, 22, 4763–4770.
23 Q. Gu, Z. Gao, H. Zhao, Z. Lou, Y. Liao and C. Xue, RSC Adv.,
2015, 5, 49317–49325.
24 M. Groenewolt and M. Antonietti, Adv. Mater., 2005, 17,
1789–1792.
Acknowledgements
We would like to thank nancial support by the Major State
25 H. Zhao, H. Yu, X. Quan, S. Chen, H. Zhao and H. Wang, RSC
Adv., 2014, 4, 624–628.
Basic
Resource Development
Program
(Grant
No.
2012CB224804), NSFC (Project 21373054, 21303023, 21173052),
the Natural Science Foundation of Shanghai Science and
Technology Committee (08DZ2270500).
26 K. Schwinghammer, B. Tuffy, M. B. Mesch, E. Wirnhier,
C. Martineau, F. Taulelle, W. Schnick, J. Senker and
B. V. Lotsch, Angew. Chem., Int. Ed., 2013, 52, 2435–2439.
27 J. Jiang, L. Yang, L. Zhu, A. Zheng, J. Zou, X. Yi and H. Tang,
Carbon, 2014, 80, 213–221.
Notes and references
1 A. Murphy, G. Dubois and T. D. P. Stack, J. Am. Chem. Soc., 28 Q. Xiang, J. Yu and M. Jaroniec, J. Phys. Chem. C, 2011, 115,
2003, 125, 5250–5251. 7355–7363.
2 J. M. Thomas and G. Sankar, Acc. Chem. Res., 2001, 34, 571– 29 F. Dong, Z. Zhao, T. Xiong, Z. L. Ni, W. D. Zhang, Y. J. Sun
581.
and W. K. Ho, ACS Appl. Mater. Interfaces, 2013, 5, 11392–
11401.
30 Q. Han, B. Wang, J. Gao, Z. Cheng, Y. Zhao, Z. Zhang and
L. Qu, ACS Nano, 2016, 10, 2745–2751.
31 C. Yuan, X. Zhang, L. Su, B. Gao and L. Shen, J. Mater. Chem.,
2009, 19, 5772–5777.
32 J. Zhang, M. Zhang, G. Zhang and Z. Wang, ACS Catal., 2012,
2, 940–948.
33 J. Xu, L. Zhang, R. Shi and Y. Zhu, J. Mater. Chem. A, 2013, 1,
14766–14772.
3 G. D. Yadav and A. A. Pujari, Org. Process Res. Dev., 2000, 4,
88–93.
4 X. Deng and C. M. Friend, J. Am. Chem. Soc., 2005, 127,
17178–17179.
5 S. B. Kumar, S. P. Mirajkar, G. C. G. Pais, P. Kumar and
R. Kumar, J. Catal., 1995, 156, 163–169.
6 Z. X. Ding, X. F. Chen, M. Antonietti and X. C. Wang,
ChemSusChem, 2011, 4, 274–281.
7 X. Liu, J. Ding, X. Lin, R. H. Gao, Z. H. Li and W. L. Dai, Appl.
Catal., A, 2015, 503, 117–123.
34 A. Vinu, Adv. Funct. Mater., 2008, 18, 816–827.
8 X. Duan, H. Sun, Y. Wang, J. Kang and S. Wang, ACS Catal., 35 Y. J. Cui, J. S. Zhang, G. G. Zhang, J. H. Huang, P. Liu,
2015, 5, 553–559.
M. Antonietti and X. C. Wang, J. Mater. Chem., 2011, 21,
13032–13039.
36 W. K. Ho, Z. Z. Zhang, W. Lin, S. Huang, X. W. Zhang,
X. X. Wang and Y. Huang, ACS Appl. Mater. Interfaces,
2015, 7, 5497–5505.
9 A. Dhakshinamoorthy, A. Primo, P. Concepcion, M. Alvaro
and H. Garcia, Chem.–Eur. J., 2013, 19, 7547–7554.
10 W. Li, Y. Gao, W. Chen, P. Tang, W. Z. Li, Z. J. Shi, D. S. Su,
J. G. Wang and D. Ma, ACS Catal., 2014, 4, 1261–1266.
11 Y. Wang, X. C. Wang and M. Antonietti, Angew. Chem., Int. 37 A. Thomas, A. Fischer, F. Goettmann, M. Antonietti,
€
€
Ed., 2012, 51, 68–89.
J. O. Muller, R. Schlogl and J. M. Carlsson, J. Mater.
12 A. Thomas, A. Fischer, F. Goettmann, M. Antonietti,
Chem., 2008, 18, 4893–4908.
J. O. Muller, R. Schlogl and J. M. Carlsson, J. Mater. 38 Y. Shiraishi, S. Kanazawa, Y. Kofuji, H. Sakamoto,
Chem., 2008, 40, 4893–4908.
13 S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai,
X. Wang and P. M. Ajayan, Adv. Mater., 2013, 25, 2452–2456.
S. Ichikawa, S. Tanaka and T. Hirai, Angew. Chem., Int. Ed.,
2014, 53, 13454–13459.
This journal is © The Royal Society of Chemistry 2017
RSC Adv., 2017, 7, 5340–5348 | 5347