Page 13 of 16
Chemistry of Materials
20.
Crystals. Angew. Chem., Int. Ed. 2004, 43, 4002-4011.
21. Chinnasamy, C. N.; Narayanasamy, A.; Ponpandian, N.;
Chattopadhyay, K.; Shinoda, K.; Jeyadevan, B.; Tohji, K.; Nakatsuka, K.;
Furubayashi, T.; Nakatani, I., Mixed spinel structure in nanocrystalline
NiFe2O4. Phys. Rev. B: Condens. Matter 2001, 63, 184108.
Braga, D.; Grepioni, F., Reactions Between or Within Molecular
technical support and helpful discussions. RME thanks the financial sup-
port from the Spanish Ministry of Economy and Competitiveness
through a Ramón y Cajal grant (grant No. RYC-2013-13451).
1
2
3
4
5
6
7
8
REFERENCES
22.
Harris, V. G.; Fatemi, D. J.; Cross, J. O.; Carpenter, E. E.;
1.
ed.; Butterworth-Heinemann: 1998.
Greenwood, N. N.; Earnshaw, A., Chemistry of the Elements. 2nd
Browning, V. M.; Kirkland, J. P.; Mohan, A.; Long, G. J., One-step processing
of spinel ferrites via the high-energy ball milling of binary oxides. J. Appl.
Phys. 2003, 94, 496-501.
2.
Kung, H. H., Transition Metal Oxides: Surface Chemistry and
Schubert, U.; Hüsing, N., Synthesis of inorganic materials, 2nd
Catalysis. Elsevier: Amsterdam, 1989.
23.
Ed. Wiley-VCH: Weinheim, 2005.
9
3.
4.
Dionne, G. F., Magnetic oxides, 1st Ed. Springer: London, 2009.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Coey, J. M. D., Magnetism and Magnetic Materials, 1st Ed.
24.
Diodati, S.; Dolcet, P.; Casarin, M.; Gross, S., Pursuing the
Cambridge University Press: New York, 2010.
5. Muscas, G.; Yaacoub, N.; Concas, G.; Sayed, F.; Hassan, R. S.;
Greneche, J. M.; Cannas, C.; Musinu, A.; Foglietti, V.; Casciardi, S.;
Sangregorio, C.; Peddis, D., Evolution of the magnetic structure with
chemical composition in spinel iron oxide nanoparticles. Nanoscale 2015, 7,
13576-13585.
Crystallization of Mono- and Polymetallic Nanosized Crystalline Inorganic
Compounds by Low-Temperature Wet-Chemistry and Colloidal Routes.
Chem. Rev. (Washington, DC, U. S.) 2015, 115, 11449-11502.
25.
Mao, Y.; Park, T.-J.; Zhang, F.; Zhou, H.; Wong, S. S.,
Environmentally Friendly Methodologies of Nanostructure Synthesis. Small
2007, 3, 1122-1139.
6.
Fernández-García, M.; Martínez-Arias, A.; Hanson, J. C.;
26.
Javadi, S.; Masoudpanah, S. M.; Zakeri, A., Conventional versus
Rodriguez, J. A., Nanostructured Oxides in Chemistry:ꢀ Characterization
and Properties. Chem. Rev. (Washington, DC, U. S.) 2004, 104, 4063-4104.
microwave combustion synthesis of CoFe2O4 nanoparticles. J. Sol-Gel Sci.
Technol. 2016, 79, 176-183.
7.
Karimi, B.; Mansouri, F.; Mirzaei, H. M., Recent Applications of
27.
Niederberger, M.; Antonietti, M., Nonaqueous Sol–Gel Routes
Magnetically Recoverable Nanocatalysts in C-C and C-X Coupling
Reactions. ChemCatChem 2015, 7, 1736-1789.
to Nanocrystalline Metal Oxides. In Nanomaterials Chemistry, Rao, C. N.
R.; Müller, A.; Cheetham, A. K., Eds. Wiley-VCH Verlag GmbH & Co.
KGaA: 2007; pp 119-137.
8.
Hudson, R.; Feng, Y.; Varma, R. S.; Moores, A., Bare magnetic
nanoparticles: sustainable synthesis and applications in catalytic organic
transformations. Green Chem. 2014, 16, 4493-4505.
28.
Bilecka, I.; Kubli, M.; Amstad, E.; Niederberger, M.,
Simultaneous formation of ferrite nanocrystals and deposition of thin films
via a microwave-assisted nonaqueous sol-gel process. J. Sol-Gel Sci.
Technol. 2011, 57, 313-322.
9.
Casbeer, E.; Sharma, V. K.; Li, X.-Z., Synthesis and
photocatalytic activity of ferrites under visible light: A review. Sep. Purif.
Technol. 2012, 87, 1-14.
29.
Pinna, N.; Niederberger, M., Surfactant-free nonaqueous
10.
Sreekumar, K.; Sugunan, S., Ferrospinels based on Co and Ni
synthesis of metal oxide nanostructures. Angew. Chem., Int. Ed. 2008, 47,
5292-5304.
prepared via a low temperature route as efficient catalysts for the selective
synthesis of o-cresol and 2,6-xylenol from phenol and methanol. J. Mol.
Catal. A: Chem. 2002, 185, 259-268.
30.
Technology. Noyes Publications, Park Ridge, New Jersey, U.S.A: 2001.
31. Modeshia, D. R.; Walton, R. I., Solvothermal synthesis of
Byrappa, K.; Yoshimura, M., Handbook of Hydrothermal
11.
Shi, F.; Tse, M. K.; Pohl, M.-M.; Radnik, J.; Brückner, A.; Zhang,
S.; Beller, M., Nano-iron oxide-catalyzed selective oxidations of alcohols and
olefins with hydrogen peroxide. J. Mol. Catal. A: Chem. 2008, 292, 28-35.
perovskites and pyrochlores: crystallisation of functional oxides under mild
conditions. Chem. Soc. Rev. 2010, 39, 4303-4325.
12.
PalDey, S.; Gedevanishvili, S.; Zhang, W.; Rasouli, F., Evaluation
32.
Cushing, B. L.; Kolesnichenko, V. L.; O'Connor, C. J., Recent
of a spinel based pigment system as a CO oxidation catalyst. Appl. Catal., B
2005, 56, 241-250.
Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles. Chem.
Rev. (Washington, DC, U. S.) 2004, 104, 3893-3946.
13.
Guin, D.; Baruwati, B.; Manorama, S. V., A simple chemical
33.
Lu, A.-H.; Salabas, E. L.; Schüth, F., Magnetic Nanoparticles:
synthesis of nanocrystalline AFe2O4 (A = Fe, Ni, Zn): An efficient catalyst
for selective oxidation of styrene. J. Mol. Catal. A: Chem. 2005, 242, 26-31.
Synthesis, Protection, Functionalization, and Application. Angew. Chem.,
Int. Ed. 2007, 46, 1222-1244.
14.
Zhang, D.-H.; Li, H.-B.; Li, G.-D.; Chen, J.-S., Magnetically
34.
Sanchez-Dominguez, M.; Pemartin, K.; Boutonnet, M.,
recyclable Ag-ferrite catalysts: general synthesis and support effects in the
epoxidation of styrene. Dalton Trans. 2009, 10527-10533.
Preparation of inorganic nanoparticles in oil-in-water microemulsions: A
soft and versatile approach. Curr. Opin. Colloid Interface Sci. 2012, 17, 297-
305.
15.
Florea, M.; Alifanti, M.; Parvulescu, V. I.; Mihaila-Tarabasanu,
D.; Diamandescu, L.; Feder, M.; Negrila, C.; Frunza, L., Total oxidation of
toluene on ferrite-type catalysts. Catal. Today 2009, 141, 361-366.
35.
Zarur, A. J.; Ying, J. Y., Reverse microemulsion synthesis of
nanostructured complex oxides for catalytic combustion. Nature 2000, 403,
65-67.
16.
Tsoncheva, T.; Manova, E.; Velinov, N.; Paneva, D.; Popova, M.;
Kunev, B.; Tenchev, K.; Mitov, I., Thermally synthesized nanosized copper
ferrites as catalysts for environment protection. Catal. Commun. 2010, 12,
105-109.
36.
Miniemulsions. Adv. Mater. (Weinheim, Ger.) 2001, 13, 765-768.
37. Landfester, K., Miniemulsions for Nanoparticle Synthesis. Top.
Curr. Chem. 2003, 227, 75-123.
Landfester, K., The Generation of Nanoparticles in
17.
Dillert, R.; Taffa, D. H.; Wark, M.; Bredow, T.; Bahnemann, D.
W., Research Update: Photoelectrochemical water splitting and
photocatalytic hydrogen production using ferrites (MFe2O4) under visible
light irradiation. APL Mater. 2015, 3, 104001.
38.
Muñoz-Espí, R.; Weiss, C. K.; Landfester, K., Inorganic
nanoparticles prepared in miniemulsion. Curr. Opin. Colloid Interface Sci.
2012, 17, 212-224.
18.
Kim, J. H.; Kim, J. H.; Jang, J.-W.; Kim, J. Y.; Choi, S. H.; Magesh,
39.
Muñoz-Espí, R.; Mastai, Y.; Gross, S.; Landfester, K., Colloidal
G.; Lee, J.; Lee, J. S., Awakening Solar Water-Splitting Activity of ZnFe2O4
Nanorods by Hybrid Microwave Annealing. Adv. Energy Mater. 2015, 5,
1401933.
systems for crystallization processes from liquid phase. CrystEngComm
2013, 15, 2175-2192.
40.
chemical solutions. Chem. Soc. Rev. 2014, 43, 2187-2199.
41. Rabenau, A., The Role of Hydrothermal Synthesis in Preparative
Chemistry. Angew. Chem., Int. Ed. Engl. 1985, 24, 1026-1040.
Einarsrud, M.-A.; Grande, T., 1D oxide nanostructures from
19.
Zhu, Y.; Stubbs, L. P.; Ho, F.; Liu, R.; Ship, C. P.; Maguire, J. A.;
Hosmane, N. S., Magnetic Nanocomposites: A New Perspective in
Catalysis. ChemCatChem 2010, 2, 365-374.
13
ACS Paragon Plus Environment