13
Li et al.: Dose uncertainty for SSPT of moving tumors
13
monitor unit constraints on plan quality. Med Phys. 2010;37:1210–
1219.
REFERENCES
1. Zhang X, Li Y, Pan X, et al. Intensity-modulated proton therapy reduces
the dose to normal tissue compared with intensity-modulated radiation
therapy or passive scattering proton therapy and enables individualized
radical radiotherapy for extensive stage IIIB non-small-cell lung cancer:
a virtual clinical study. Int J Radiat Oncol Biol Phys. 2010;77:357–366.
2. Chang JY, Li H, Zhu XR, et al. Clinical implementation of intensity
modulated proton therapy for thoracic malignancies. Int J Radiat Oncol
Biol Phys. 2014;90:809–818.
3. Engelsman M, Schwarz M, Dong L. Physics controversies in proton ther-
apy. Sem Radiat Oncol. 2013;23:88–96.
4. Phillips MH, Pedroni E, Blattmann H, Boehringer T, Coray A, Scheib S.
Effects of respiratory motion on dose uniformity with a charged particle
scanning method. Phys Med Biol. 1992;37:223–234.
21. Li H, Li Y, Zhang X, et al. Dynamically accumulated dose and 4D accu-
mulated dose for moving tumors. Med Phys. 2012;39:7359–7367.
22. Court L, Wagar M, Bogdanov M, et al. Use of reduced dose rate when
treating moving tumors using dynamic IMRT. J Appl Clin Med Phys.
2011;12:3276.
23. Furukawa T, Inaniwa T, Sato S, et al. Design study of a raster scanning
system for moving target irradiation in heavy-ion radiotherapy. Med
Phys. 2007;34:1085–1097.
24. Furukawa T, Inaniwa T, Sato S, et al. Moving target irradiation with fast
rescanning and gating in particle therapy. Med Phys. 2010;37:4874–
4879.
25. Mori S, Inaniwa T, Furukawa T, et al. Amplitude-based gated phase-con-
trolled rescanning in carbon-ion scanning beam treatment planning
under irregular breathing conditions using lung and liver 4DCTs. J
Radiat Res. 2014;55:948–958.
5. Bert C, Durante M. Motion in radiotherapy: particle therapy. Phys Med
Biol. 2011;56:R113–R144.
6. Lambert J, Suchowerska N, McKenzie DR, Jackson M. Intrafractional
motion during proton beam scanning. Phys Med Biol. 2005;50:4853–
4862.
7. Bert C, Grozinger SO, Rietzel E. Quantification of interplay effects of
scanned particle beams and moving targets. Phys Med Biol. 2008;53:
2253–2265.
26. Li H, Zhu XR, Zhang X. Reducing dose uncertainty for spot-scanning
proton beam therapy of moving tumors by optimizing the spot delivery
sequence. Int J Radiat Oncol Biol Phys. 2015;93:547–556.
27. George R, Vedam SS, Chung TD, Ramakrishnan V, Keall PJ. The appli-
cation of the sinusoidal model to lung cancer patient respiratory motion.
Med Phys. 2005;32:2850–2861.
8. Dowdell S, Grassberger C, Sharp GC, Paganetti H. Interplay effects in
proton scanning for lung: a 4D Monte Carlo study assessing the impact of
tumor and beam delivery parameters. Phys Med Biol. 2013;58:4137–4156.
9. Grassberger C, Dowdell S, Lomax A, et al. Motion interplay as a func-
tion of patient parameters and spot size in spot scanning proton therapy
for lung cancer. Int J Radiat Oncol Biol Phys. 2013;86:380–386.
10. Kraus KM, Heath E, Oelfke U. Dosimetric consequences of tumour
motion due to respiration for a scanned proton beam. Phys Med Biol.
2011;56:6563–6581.
28. Lujan AE, Larsen EW, Balter JM, Ten Haken RK. A method for incor-
porating organ motion due to breathing into 3D dose calculations. Med
Phys. 1999;26:715–720.
29. Fitzpatrick MJ, Starkschall G, Balter P, et al. A novel platform simulat-
ing irregular motion to enhance assessment of respiration-correlated
radiation therapy procedures. J Appl Clin Med Phys. 2005;6:13–21.
30. Grassberger C, Dowdell S, Sharp G, Paganetti H. Motion mitigation for
lung cancer patients treated with active scanning proton therapy. Med
Phys. 2015;42:2462–2469.
11. Seco J, Robertson D, Trofimov A, Paganetti H. Breathing interplay
effects during proton beam scanning: simulation and statistical analysis.
Phys Med Biol. 2009;54:N283–N294.
31. Bernatowicz K, Lomax AJ, Knopf A. Comparative study of layered and
volumetric rescanning for different scanning speeds of proton beam in
liver patients. Phys Med Biol. 2013;58:7905–7920.
12. Engwall E, Glimelius L, Hynning E. Effectiveness of different rescan-
ning techniques for scanned proton radiotherapy in lung cancer patients.
Phys Med Biol. 2018;63:095006.
13. Chang JY, Zhang X, Knopf A, et al. Consensus guidelines for imple-
menting pencil-beam scanning proton therapy for thoracic malignancies
on behalf of the PTCOG thoracic and lymphoma subcommittee. Int J
Radiat Oncol Biol Phys. 2017;99:41–50.
14. Jakobi A, Perrin R, Knopf A, Richter C. Feasibility of proton pencil
beam scanning treatment of free-breathing lung cancer patients. Acta
Oncol. 2018;57:203–210.
32. Knopf AC, Hong TS, Lomax A. Scanned proton radiotherapy for mobile
targets-the effectiveness of re-scanning in the context of different treat-
ment planning approaches and for different motion characteristics. Phys
Med Biol. 2011;56:7257–7271.
33. Zenklusen SM, Pedroni E, Meer D. A study on repainting strategies for
treating moderately moving targets with proton pencil beam scanning at
the new Gantry 2 at PSI. Phys Med Biol. 2010;55:5103–5121.
34. Younkin JE, Bues M, Sio TT, et al. Multiple energy extraction reduces
beam delivery time for a synchrotron-based proton spot-scanning sys-
tem. Adv Radiat Oncol. 2018;3:412–420.
15. Kardar L, Li Y, Li X, et al. Evaluation and mitigation of the interplay
effects of intensity modulated proton therapy for lung cancer in a clinical
setting. Pract Radiat Oncol. 2014;4:e259–e268.
35. Sawakuchi GO, Titt U, Mirkovic D, et al. Monte Carlo investigation of
the low-dose envelope from scanned proton pencil beams. Phys Med
Biol. 2010;55:711–721.
16. Li Y, Kardar L, Li X, et al. On the interplay effects with proton scanning
beams in stage III lung cancer. Med Phys. 2014;41:021721.
17. Gillin MT, Sahoo N, Bues M, et al. Commissioning of the discrete spot
scanning proton beam delivery system at the University of Texas M.D.
Anderson Cancer Center, Proton Therapy Center, Houston. Med Phys.
2010;37:154–163.
36. Mori S, Karube M, Shirai T, et al. Carbon-ion pencil beam scanning
treatment with gated markerless tumor tracking: an analysis of positional
accuracy. Int J Radiat Oncol Biol Phys. 2016;95:258–266.
37. Ebner DK, Tsuji H, Yasuda S, Yamamoto N, Mori S, Kamada T. Respi-
ration-gated fast-rescanning carbon-ion radiotherapy. Jpn J Clin Oncol.
2017;47:80–83.
18. Li Y, Zhu RX, Sahoo N, Anand A, Zhang X. Beyond Gaussians: a study
of single-spot modeling for scanning proton dose calculation. Phys Med
Biol. 2012;57:983–997.
19. Zhu XR, Poenisch F, Lii M, et al. Commissioning dose computation
models for spot scanning proton beams in water for a commercially
available treatment planning system. Med Phys. 2013;40:041723.
20. Zhu XR, Sahoo N, Zhang X, et al. Intensity modulated proton ther-
apy treatment planning using single-field optimization: the impact of
38. Poulsen PR, Eley J, Langner U, Simone CB 2nd, Langen K. Efficient
interplay effect mitigation for proton pencil beam scanning by spot-
adapted layered repainting evenly spread out over the full breathing
cycle. Int J Radiat Oncol Biol Phys. 2018;100:226–234.
39. Koybasi O, Mishra P, St James S, Lewis JH, Seco J. Simulation of dosi-
metric consequences of 4D-CT-based motion margin estimation for pro-
ton radiotherapy using patient tumor motion data. Phys Med Biol.
2014;59:853–867.
Medical Physics, 0 (0), xxxx