Journal Pre-proof
[3]
W. H. Moos, C. R. Hurt, Morales, G. A. Combinatorial chemistry: oh what a decade or two
can do. Mol. Diversity. 13 (2009) 241-245. https://doi.org/10.1007/s11030-009-9127-y
0.1021/cr800296p.
[
1
[5]
C. Lamberth. Multicomponent reactions in crop protection chemistry. Bioorg. Med. Chem.
2
8 (2020) 115471. https://doi.org/10.1016/j.bmc.2020.115471.
[6]
R. Kakuchi, Multicomponent Reactions in Polymer Synthesis. Angew. Chem. Int. Ed. 53
(
2014) 46-48. https://doi.org/ 10.1002/anie.201305538.
[7]
8]
M. B. A. Gloria, Encyclopedia of Food Sciences and nutrion. Second Edition. 2003, 173.
D. E Edmondson, A Mattevi, C Binda, M Li, F. Hubálek, Structure and mechanism of
[
monoamine oxidase. Curr Med Chem. 11 (2004) 1983-1993. https://doi.org/
0.2174/0929867043364784.
1
[9]
M. Pagliaro, S. Campestrini, R. Ciriminna, Ru-based oxidation catalysis. Chem. Soc. Rev.
34 (2005) 837-845. https://doi.org/10.1039/B507094P.
[
10] J. H. Teles, I. Hermans, G. Franz, R. A. Sheldon, Wiley-VCH Verlag GmbH & Co. KGaA,
Weinheim, 2015, DOI: 10.1002/14356007.a18_261.pub.
11] U. R. Pillai, E. Sahle-Demessie, Oxidation of alcohols over Fe3+/montmorillonite-K10
using hydrogen peroxide Appl. Catal. Gen. 245 (2003) 103-109.
https://doi.org/10.1016/S0926-860X(02)00617-8.
12] I. E. Marko, P. R. Giles, M. Tsukazaki, I. Che´lle-Regnaut, A. Gautier, M. S. Brown, C. J. Urch,
Efficient, Ecologically Benign, Aerobic Oxidation of Alcohols. J. Org. Chem. 64 (1999) 2433-
439. https://doi.org/10.1021/jo982239s.
13] M.; Gupta, Paul, S.; Gupta, R. General aspects of 12 basic principles of green chemistry
with applications. Curr. Sci. 99 (2010) 1341-1360. https://www.jstor.org/stable/i24069032.
14] J. Dong, E. Fernández‐Fueyo, F. Hollmann, C. E. Paul, M. Pesic, S. Schmidt, Y. Wang, S
[
[
2
[
[
Younes, W. Zhang, Biocatalytic Oxidation Reactions: A Chemist's Perspective. Angew. Chem. Int.
Ed. 57 (2018) 9238-9261. https://doi.org/10.1002/anie.201800343.
[
15] M. Largeron, Aerobic catalytic systems inspired by copper amine oxidases: recent
developments and synthetic applications. Org. Biomol. Chem. 15 (2017) 4722-4730.
https://doi.org/10.1039/C7OB00507E.
[
16] A. Yoshida, Y. Takenaka, H. Tamaki, I. Frefibort, O. Adachi, H. J. Kumagai, Vanillin
formation by microbial amine oxidases from vanillylamine. J. Ferment. Bioeng. 84 (1997) 603-
05. https://doi.org/10.1016/S0922-338X(97)81920-4.
17] H. Priefert, J. Rabenhorst, Steinbüchel, Appl Microbiol Biotechnol. 56 (2001) 296-314.
https://doi.org/10.1007/s002530100687.
18] V. L. Davidson, Electron transfer in quinoproteins. Arch. Biochem. Biophys. 428 (2004)
2-40. https://doi.org/ 10.1016/j.abb.2004.03.022.
19] G. Golime, G. Bogonda, , H. Y. Kim, K. Oh, Biomimetic Oxidative Deamination Catalysis via
6
[
[
3
[
ortho-Naphthoquinone-Catalyzed Aerobic Oxidation Strategy. ACS Catal. 8 (2018) 4986-4990.
https://doi.org/ 10.1021/acscatal.8b00992.
[20] R. Hilger, J.-P. Vincken, H. Gruppen, M. A. Kabel, Laccase/Mediator Systems: Their
Reactivity toward Phenolic Lignin Structures. ACS Sustainable Chem. Eng. 6 (2018) 2037-2046.
https://doi.org/ 10.1021/acssuschemeng.7b03451.
[
21] P. Galletti, F. Funiciello, R. Soldati, D. Giacominia, Selective Oxidation of Amines to
Aldehydes or Imines using Laccase‐Mediated Bio‐Oxidation. Adv. Synth. Catal. 357 (2015)
840-1848. https://doi.org/10.1002/adsc.201500165.
22] M. Ghandi, M. T. Nazeri, M. Kubicki, An efficient one-pot, regio- and stereoselective
synthesis of novel pentacyclic-fused pyrano[3,2,c]chromenone or quinolinone benzosultone
derivatives in water. Tetrahedron. 69 (2013) 4979-4989. https://doi.org/
0.1016/j.tet.2013.04.018.
23] P. Klumphu, B.H. Lipshutz, “Nok”: A Phytosterol-Based Amphiphile Enabling Transition-
1
[
1
[
Metal-Catalyzed Couplings in Water at Room Temperature. J. Org. Chem. 79 (2014) 888-900.
https://doi.org/ 10.1021/jo401744b.