10.1002/chem.202002479
Chemistry - A European Journal
COMMUNICATION
and Science of the government of the Netherlands and by the
Dutch Research Council (NWO).
Keywords: Pickering emulsions • Droplet microfluidics •
Biphasic catalysis • Raman spectroscopy
[1]
[2]
W. Keim, Angew. Chem. Int. Ed. 2013, 52, 12492–12496.
C. W. Kohlpaintner, R. W. Fischer, B. Cornils, Appl. Catal. A Gen.
2001, 221, 219–225.
[3]
Y. J. Pagán-Torres, T. Wang, J. M. R. Gallo, B. H. Shanks, J. A.
Dumesic, ACS Catal. 2012, 2, 930–934.
[4]
[5]
D. S. Flett, Acc. Chem. Res. 1977, 10, 99–104.
L. Wei, M. Zhang, X. Zhang, H. Xin, H. Yang, ACS Sustain. Chem.
Eng. 2016, 4, 6838–6843.
[6]
[7]
Y. Chevalier, M. A. Bolzinger, Colloids Surfaces A Physicochem.
Eng. Asp. 2013, 439, 23–34.
R. Aveyard, B. P. Binks, J. H. Clint, Adv. Colloid Interface Sci. 2003,
100–102, 503–546.
[8]
[9]
F. Tu, D. Lee, J. Am. Chem. Soc. 2014, 136, 9999–10006.
H. Kim, J. J. Cho, J. J. Cho, B. J. Park, J. W. Kim, ACS Appl. Mater.
Interfaces 2018, 10, 1408–1414.
Figure 4. Product distribution compared to the starting amount 1 of the tandem
catalytic reaction without (FBS) and with addition of silica (FPE). Red bars show
of benzaldehyde dimethyl acetal (1), orange bars benzaldehyde (2) and yellow
bars benzylidene malononitrile (3) content in the sample. Reaction conditions:
0.16 M 1, 0.4 M malononitrile, 0.016 M 2-(1-ethylpropyl)piperidine in 4-
propylguaiacol, 0.032 M HCl in water, T = 90 °C, total flow: 20 μL/min, reaction
time: 34 min. Addition of silica: 2 wt% with respect to organic phase.
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
N. M. Briggs, J. S. Weston, B. Li, D. Venkataramani, C. P. Aichele,
J. H. Harwell, S. P. Crossley, Langmuir 2015, 31, 13077–13084.
M. Zhang, A. Wang, J. Li, N. Song, Y. Song, R. He, Mater. Sci. Eng.
C 2017, 70, 396–404.
B. P. Binks, J. Philip, J. A. Rodrigues, Langmuir 2005, 21, 3296–
3302.
In conclusion, we report the first use of a tube-in-tube co-flow
microfluidic setup for continuous flow BS and PE reactions.
Residence time can simply be tuned by changing the tubing
length or the flow rate, a clear benefit of this system. The
transparent tubing enabled reaction monitoring by in-situ Raman
spectroscopy. The formation of an FPE by silica addition, led to
an increase in stability of the w/o droplets, which proved to be
beneficial for catalytic performance. The acid-catalyzed
deacetalization reaction performed much better in an FPE than in
the FBS, showing a ninefold increase in yield. The higher
reactivity of the FPE was attributed to high droplet stability as this
is correlated to the high interfacial area which is required for this
reaction. The FPE system also showed much improved
performance in the antagonistic deacetalization-Knoevenagel
condensation tandem reaction, with Pickering stabilization limiting
mutual destruction of the acid and base catalyst. The continuous
flow microfluidic PE reactor thus proved to be a very versatile
system to further the possibilities and understanding of PE
catalysis.
C. Albert, M. Beladjine, N. Tsapis, E. Fattal, F. Agnely, N. Huang, J.
Control. Release 2019, 309, 302–332.
J. Faria, M. Pilar Ruiz, D. E. Resasco, ACS Catal. 2015, 5, 4761–
4771.
C. M. Vis, L. C. J. Smulders, P. C. A. Bruijnincx, ChemSusChem
2019, 12, 2176–2180.
H. Yang, L. Fu, L. Wei, J. Liang, B. P. Binks, J. Am. Chem. Soc.
2015, 137, 1362–1371.
H. Chen, H. Zou, Y. Hao, H. Yang, ChemSusChem 2017, 10, 1989–
1995.
X. Casadevall i Solvas, A. deMello, Chem. Commun. 2011, 47,
1936–1942.
C. Priest, M. D. Reid, C. P. Whitby, J. Colloid Interface Sci. 2011,
363, 301–306.
Z. Nie, Z. Nie, J. Il Park, J. Il Park, W. Li, W. Li, S. a F. Bon, S. a F.
Bon, E. Kumacheva, E. Kumacheva, J. Am. Chem. Soc. 2008, 130,
16508–16509.
[21]
[22]
[23]
[24]
[25]
M. Pan, L. Rosenfeld, M. Kim, M. Xu, E. Lin, R. Derda, S. K. Y.
Tang, ACS Appl. Mater. Interfaces 2014, 6, 21446–21453.
A. Schröder, J. Sprakel, K. Schroën, J. N. Spaen, C. C. Berton-
Carabin, J. Food Eng. 2018, 234, 63–72.
Acknowledgements
R. Al nuumani, G. T. Vladisavljević, M. Kasprzak, B. Wolf, J. Food
Eng. 2020, 267, 109701.
Thomas van Swieten (Utrecht University) is acknowledged for his
help with the thermoluminescence experiments. Jeroen
Vollenbroek (University of Twente, UT) and Dr. Mathieu Odijk
(UT) are acknowledged for their input and fruitful discussions.
This work was supported by a VIDI grant of the Dutch Research
Council (NWO) as well as by the Netherlands Center for
Multiscale Catalytic Energy Conversion (MCEC), an NWO
gravitation program funded by the Ministry of Education, Culture
Q. Y. Xu, M. Nakajima, B. P. Binks, Colloids Surfaces A
Physicochem. Eng. Asp. 2005, 262, 94–100.
R. G. Geitenbeek, P. T. Prins, W. Albrecht, A. Van Blaaderen, B. M.
Weckhuysen, A. Meijerink, J. Phys. Chem. C 2017, 121, 3503–
3510.
[26]
R. G. Geitenbeek, J. C. Vollenbroek, H. M. H. Weijgertze, C. B. M.
4
This article is protected by copyright. All rights reserved.