S.K. Pardeshi, R.Y. Pawar / Materials Research Bulletin 45 (2010) 609–615
615
oxidation due to the presence of reducible Fe4+ sites forming highly
active oxygen species at lower temperature [43]. The lower
oxidation state of calcium (2+) in comparison to other metal ions
favors either an increase in the oxidation state of Fe from 3+ to 4+,
or oxygen vacancies can be generated to maintain the structure
electroneutrality [27].
[6] R.A. Canderia, M.I. Bernardi, E. Longo, I.M.G. Santosh, A.G. Souza, Mater. Lett. 58
(2004) 569–572.
[7] Y.L. Liu, Z.M. Liu, Y. Yang, H.F. Yang, G.L. Shen, R.Q. Yu, Sens. Actuators B 107 (2005)
600–604.
[8] T. Mathew, S.S. Biju, M. Devasi, M. Vijayraj Chilukuri, V.V. Satyanarayana, B.S. Rao,
C.S. Gopinath, Appl. Catal. A: Gen. 273 (1–2) (2004) 35–45.
[9] K. Shreekumar, M. Thomas, T.M. Jyothi, M.D. Biju, S. Sugunan, B.S. Rao, Polish J.
Chem. 74 (2000) 509–517.
[10] M.A. Gibson, J.W. Hightower, J. Catal. 41 (1976) 420–430.
[11] E. Manova, T. Tsoncheva, D. Paneva, I. Mitov, K. Tenchev, L. Petrov, Appl. Catal. A:
Gen. 277 (1–2) (2004) 119–127.
4. Conclusions
[12] L.C.A. Oliveria, J.D. Fabris, R.R.V.S. Rios, W.N. Mussel, R.M. Lago, Appl. Catal. A: Gen.
259 (2004) 253–259.
[13] S. Paldey, S. Gadevanishvii, W. Zhang, F. Rasouli, Appl. Catal. B: Environ. 56 (3)
(2005) 241–250.
[14] J.B. Silva, C.F. Diniz, R.M. Lago, N.D.S. Mohallem, J. Magn. Magn. Mater. 278 (2004)
272–276.
[15] C.R. Xiong, Q.L. Chen, W.R. Lu, H.X. Gao, Z. Gao, Catal. Lett. 69 (2000) 231.
[16] F. Tihay, A.C. Roger, G. Pourroy, A. Kiennemann, Energy Fuels 16 (5) (2002) 1271–
1276.
[17] R. Spretz, S.G. Marchetti, M.A. Ulla, E.A. Lombordo, J. Catal. 194 (2000) 167–174.
[18] D. Gao, Q. Gao, Catal. Commun. 8 (2007) 681–685.
[19] Regina C.C. Costa, C.A. Fatima Lelis Luis, Oliveira Jose D. Fabris, Jose D. Ardisson,
Rachel R.A. Rios, Cristina L. Silva, Rochel M. Lago, Catal. Commun. 4 (2003) 525–
529.
[20] M.S. Selim, G. Turkey, M.A. Shouman, G.A. El-Shobaky, Solid State Ionics Diffus.
React. 120 (1999) 173–181.
[21] Y. Li, J. Zhao, J. Jiang, J. Han, Mater. Res. Bull. 38 (2003) 1393.
[22] A.S. Albuquerque, J.D. Ardisson, W.A.A. Macedo, J. Magn. Magn. Mater. 192 (1999)
277.
[23] T. Sato, K. Haneda, M. Seki, T. Iijima, Appl. Phys. A 50 (1990) 13.
[24] M. Yokoyama, E. Ohta, T. Sato, J. Magn. Magn. Mater. 183 (1998) 173.
[25] T. Kamiyama, K. Honeda, T. Sato, S. Ikeda, H. Asano, Solid State Commun. 81
(1992) 563.
[26] C. Rath, N.C. Mishra, S. Anand, R.P. Das, K.K. Sahu, C. Upadhyay, H.C. Verma, Appl.
Phys. Lett. 76 (2000) 475.
[27] C. Upadhyay, H.C. Verma, C. Rath, K.K. Sahu, S. Anand, R.P. Das, N.C. Mishra, J.
Alloys Compd. 326 (2001) 94.
[28] Y. Li, J. Zhao, J. Han, Mater. Res. Bull. 37 (2002) 583.
[29] S. Gubbala, H. Nathani, K. Koizol, R.D.K. Misra, Physica B 348 (2004) 317.
[30] K. Madhusudan Reddy, L. Satyanarayana, Sunkara V. Manorama, R.D.K. Misra,
Mater. Res. Bull. 39 (2004) 1491.
CaFe2O4 complex oxide catalyst is prepared by the citrate gel
method. This complex type ferrite catalyst is found to be highly
active than other reported metal ferrites for the oxidation of
styrene with H2O2 as an oxidant. The promoting effect of the
oxidation can be ascribed to the activation of oxygen ad species
(such as O2ꢂ), which was accompanied with the reduction of
abnormal valence iron (Fe4+) site in the surface layer of catalyst.
The active oxygen species reversibly appeared and disappeared on
the iron site due to sorption of atmospheric oxygen at the same
temperature range. The heterogeneously catalyzed liquid phase
oxidation of styrene proceeds by a free radical mechanism as
confirmed by using tertiary butyl alcohol as a scavenger. The free
radical involves initiation on the catalyst surface and homoge-
neous or heterogeneous propagation in the liquid. Styrene
undergoes a C55C bond cleavage preferentially over calcium ferrite
oxide catalyst to give benzaldehyde as a major product and
formation of byproduct such as styrene oxide (epoxide), benzoic
acid, phenyl acetaldehyde as minor products. Acetone as a reaction
medium, reaction temperature 40 8C, reaction time 18 h and
styrene:hydrogen peroxide ratio 1:1 was found to be favorable for
increasing the selectivity of benzaldehyde. The 0.1 g of catalyst
amount is optimized for the maximum conversion of styrene up to
38 ꢀ 2 mol% with the selectivity of benzaldehyde and phenyl
acetaldehyde is up to 91 ꢀ 2 mol% and 9 ꢀ 2 mol%, respectively,
due to the accessibility of the large number of molecules of the
reactants to the catalyst is favored.
[31] M. Kakihana, J. Sol–Gel Sci. Technol. 6 (1996) 5.
[32] M.R. Maurya, A. Kumar, J. Mol. Catal. A: Chem. 250 (2006) 190–198.
[33] N. Ma, Y. Yue, W. Hua, Z. Gao, Appl. Catal. A: Gen. 251 (2003) 39–47.
[34] J. Mendham, R.C. Denny, J.D. Barnes, M.J.K. Thomas, Vogel’s Textbook of Quanti-
tative Chemical Analysis, sixth ed., Pearson Education Pte. Ltd, Singapore, 2004.
[35] P. Yang, Z. Jiang, P. Ying, C. Li, J. Catal. 253 (2008) 66–73.
[36] R.D. Waldron, Phys. Rev. 99 (1955) 1727.
Acknowledgement
[37] W.B. White, B.A. De Angelis, Spectrochem. Acta 23A (1967) 985.
[38] R. Kumar, P. Kumar, Godwin C.G. Pais, S.P. Mirajkar, Sujit B. Kumar, J. Catal. 156
(1995) 163–166.
This work is supported by University of Pune under UPE grant.
[39] GuangJain Wang, GuangQing Liu, MingXia Xu, ZhenXing Yang, ZhengWang Liu,
ShiFu Chen, Lei Wang, Appl. Surf. Sci. 255 (2008) 2632–2640.
[40] Mannar R. Maurya, Anil K. Chandrakar, Shri Chand, J. Mol. Catal. A: Chem. 278
(2007) 12–21.
[41] K.M. Parida, Sujata Mallick, J. Mol. Catal. A: Chem. 279 (2008) 104–111.
[42] B.P. Barbera, J.A. Gamboa, L.E. Cadus, Appl. Catal. B: Environ. 65 (2006) 21–30.
[43] D. Hirabayashi, T. Yoshikawa, K. Mochizuki, K. Suzuki, Y. Sakai, Catal. Lett. 110
(2006) 269–274.
References
[1] D. Guin, B. Baruwati, S.V. Manorama, J. Mol. Catal. A: Chem. 242 (2005) 26–31.
[2] M.H. Kryder, Mater. Res. Soc. Bull. 21 (1996) 9.
[3] D.G.H. Mitchell, J. Magn. Reson. Imaging 7 (1997) 1.
[4] S.P. Bhatnagar, R.E. Rosensweig, J. Magn. Magn. Mater. 149 (1995) 198.
[5] L. Satyanarayana, C.V. Gopal Reddy, S.V. Manorama, V.J. Rao, Sens. Actuators B:
Chem. B 46 (1) (1998) 1–7.