A. Stolle et al. / Journal of Molecular Catalysis A: Chemical 335 (2011) 228–235
235
4. Conclusion
[3] (a) T. Nakagawa, Mod. Dev. Powder Mettalurg. 21 (1988) 653–657, CAN 1989,
110:80462;
(b) F. Lehnert, G. Lotze, G. Stephani, Materialwissenschaft und Werkstofftechnik
22 (1991) 355–358, CAN 1992, 116:25681;
(c) Y. Fujii, Kogo Zairyo 40 (1992) 112–114, CAN 1993, 119:32368;
(d) A. Yosikawa, Y. Sutou, Adv. Mater. Res. 8 (2007) 331–333.
[4] R. Brüning, P. Scholz, I. Morgenthal, O. Andersen, B. Ondruschka, Chem. Eng.
Technol. 76 (2004) 693–699.
[5] R. Brüning, P. Scholz, I. Morgenthal, O. Andersen, J. Scholz, G. Nocke, B. Ondr-
uschka, Chem. Eng. Technol. 28 (2005) 1056–1062.
[6] M. Besson, P. Gallezot, Catal. Today 57 (2000) 127–141.
[7] T. Mallat, A. Baiker, Chem. Rev. 104 (2004) 3037–3058.
[8] J.D. Lou, C. Gao, L. Li, Z.G. Fang, Chem. Monthly 137 (2006) 1071–1074.
The application of metallic short fibers of different compositions
for liquid phase oxidation has been successfully demonstrated.
Results indicated that the fibers are suitable catalysts for the for-
mation of ketones from the corresponding secondary alcohols
employing aqueous hydrogen peroxide as the terminal oxidant.
In general noble-metal free MSF are significantly more active for
reactions in combination with H2O2. Decomposition reactions of
the oxidant are significantly lower than in the presence of noble
metals (Pt, Rh, Pd). Contributing to these observations two metallic
short fibers have been chosen as model systems for further inves-
tigations: intermetallic phase Cu3Sn and Cu64Ni28Mn7Fe1-alloy.
The latter showed higher reactivity, whereas reactions in presence
of the former required longer reaction times to reach similar levels
of conversion. Despite the variation of various reaction parame-
ters like oxidant-to-substrate ratio or reaction temperature, the
oxidations proceed with high selectivity concerning the ketone for-
mation from secondary alcohols. The selectivity for the formation
of benzaldehyde from benzyl alcohol reaches a similar high level
for Cu3Sn, whereas the other material causes over-oxidation to
benzoic acid. In summary, it can be concluded that the presented
metallic short fibers are interesting materials for liquid phase oxi-
dation catalysis, which may combine the two aspects of catalyst
and material design.
´
[9] I.Y. Pondedelkina, E.A. Khaibrahmanova, V.N. Odinokov, Russ. Chem. Rev. 79
(2010) 63–77.
[10] I.E. Markó, P.R. Giles, M. Tsukazaki, S.M. Brown, C.J. Urch, Science 274 (1996)
2044–2046.
[11] T. Punniyamurthy, L. Rout, Coord. Chem. Rev. 252 (2008) 134–154.
[12] Y. Ding, Q. Gao, G. Li, H. Zhang, J. Wang, L. Yan, J. Suo, J. Mol. Catal. A 218 (2004)
161–170.
[13] (a) Z.P. Pai, A.G. Tolstikov, P.V. Berdnikova, G.N. Kustova, T.B. Khlebnikova, N.V.
Selivanova, A.B. Shangina, V.G. Kostrovskii, Russ. Chem. Bull., Int. Ed. 54 (2005)
1847–1854;
(b) M.R. Maurya, A. Arya, P. Adão, J. Costa Pessoa, Appl. Catal. A 351 (2008)
239–252;
(c) E.A. Prasetyanto, S.-E. Park, Bull. Kor. Chem. Soc. 29 (2008) 1033–1037;
(d) Y. Mi, Z. Yang, Z. Liu, F. Yang, Q. Sun, H. Tao, W. Wang, J. Wang, Catal. Lett.
129 (2009) 499–506.
[14] Z. Weng, G. Liao, J. Wang, X. Jian, Catal. Commun. 8 (2007) 1493–1496.
[15] A. Jia, L.-L. Lou, C. Zhang, Y. Zhang, S. Liu, J. Mol. Catal. A 306 (2009) 123–
129.
[16] F. Shi, M. Kin Tse, M.-M. Pohl, J. Radnik, A. Brückner, S. Zhang, M. Beller, J. Mol.
Catal. A 292 (2008) 28–35.
[17] A.M.J. Rost, A. Scherbaum, W.A. Herrmann, F.E. Kühn, New. J. Chem. 30 (2006)
1599–1605.
[18] Z. Weng, J. Wang, X. Jian, Catal. Commun. 9 (2008) 1688–1691.
[19] H. Joong Park, J. Chan Lee, Synlett (2009) 79–80.
[20] T. Hida, H. Nogusa, Tetrahedron 65 (2009) 270–274.
[21] W. Zhao, Y. Zhang, B. Ma, Y. Ding, W. Qiu, Catal. Commun. 11 (2010) 527–531.
[22] C. Vartzouma, E. Evaggellou, Y. Sanakis, N. Hadjiliadis, M. Louloudi, J. Mol. Catal.
A 263 (2007) 77–85.
[23] P.P. Pescarmona, P.A. Jacobs, Catal. Today 137 (2008) 52–60.
[24] (a) K.A.D. Swift, Top. Catal. 27 (2004) 143–155;
(b) N. Ravaiso, F. Zacceria, M. Guidotti, R. Psaro, Top. Catal. 27 (2004) 157–
168.
[25] (a) S. Sakaguchi, Y. Nishiyama, Y. Ishii, J. Org. Chem. 61 (1996) 5307–5311;
(b) M.V. Cagnoli, S.G. Casuscelli, A.M. Alvarez, J.F. Benoga, N.G. Gallegos, N.M.
Samaniego, M.E. Crivello, G.E. Ghione, C.F. Pérez, E.R. Herrero, S.G. Merchetti,
Appl. Catal. A 287 (2005) 227–235;
Acknowledgements
The assistance of G. Gottschalt (Institute for Technical Chem-
istry and Environmental Chemistry) for performing the oxidation
experiments is strongly acknowledged. AS and BO are thankful to
Dr. P. Scholz (Institute for Technical Chemistry and Environmental
Chemistry) for interesting discussions.
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
(c) M.A. Uguina, J.A. Delgado, A. Rodríguez, J. Carretero, D. Gómez-Díaz, J. Mol.
Catal. A 256 (2006) 208–215;
(d) D. Marino, N.G. Gallegos, J.F. Bengoa, A.M. Alvarez, M.V. Cagnoli, G. Casus-
celli, E.R. Herrero, S.G. Marchetti, Catal. Today 133–135 (2008) 632–638;
(e) Y. Kon, Y. Ono, T. Matsumoto, K. Sato, Synlett (2009) 1095–1098.
[26] (a) T. Okuhara, Catal. Today 73 (2002) 167–176;
References
[1] (a) G. Centi, F. Cavani, F. Trifirò (Eds.), Selective Oxidation by Heterogeneous
Catalysis, Kluwer Academic, New York, 2001;
(b) V. Nardello, J.-M. Aubry, D.E. de Vos, R. Neumann, W. Adam, R. Zhang, J.E.
ten Elshof, P.T. Witte, P.L. Alsters, J. Mol. Catal. A: Chem. 251 (2006) 185–193;
(c) A. Barman, W. Taves, R. Prabhakar, J. Comput. Chem. 30 (2009) 1405–1413;
(d) N. Mizuno, K. Kamata, K. Yamaguchi, Top. Catal. 53 (2010) 876–893.
[27] T.N. Rhodin Jr., J. Am. Chem. Soc. 72 (1950) 5102–5106.
[28] (a) S. Aksu, L. Wang, F.M. Doyle, J. Electrochem. Soc. 150 (2003) G718–G723;
(b) T. Du, D. Tamboli, S. Seal, J. Electrochem. Soc. 151 (2004) G230–G235.
[29] S.-J. Park, B.-J. Kim, J. Colloids Interface Sci. 292 (2005) 493–497.
[30] (a) N. Singh, D.G. Lee, Org. Process Res. Dev. 5 (2001) 599–603;
(b) F. Sin˜eriz, C. Thomassigny, J.D. Lou, Curr. Org. Synth. 1 (2004) 137–154;
(c) S. Dash, S. Patel, B.K. Mishra, Tetrahedron 65 (2009) 707–739.
(b) J.-E. Bäckvall (Ed.), Modern Oxidation Methods, Wiley-VCH, Weinheim,
2004;
(c) G. Tojo, M.I. Fernández, Oxidation of Alcohols to Aldehydes and Ketones: A
Guide to Current Common Practice, Springer, New York, 2005;
(d) G. Tojo, M.I. Fernández, Oxidation of primary Alcohols to Carboxylic acids:
A Guide to Current Common Practice, Springer, New York, 2007.
[2] (a) W.R. Sanderson, Pure Appl. Chem. 72 (2000) 1289–1304;
(b) S. Schrader, E.V. Dehmlow, Org. Prep. Proc. Int. 32 (2000) 123–152;
(c) G. Strukul (Ed.), Catalytic Oxidations with Hydrogen Peroxide as Oxidant,
Springer-Verlag, New York, 2003.