Paper
Organic & Biomolecular Chemistry
3 For a review on bimetallic Bi(I) and Bi(II), see: H. J. Breunig,
Z. Anorg. Allg. Chem., 2005, 631, 621–631.
Conclusion
In summary, a variety of structurally different dinuclear bis-
muthanes have been synthesized and structurally character-
ized by single crystal X-ray diffraction. Fine-tuning of the
ligand scaffold permitted a systematic evaluation of the influ-
ence of the backbone on the bismuth geometry and more
importantly, on the Bi⋯Bi distance. Among these compounds,
7 revealed itself as a dibismuthane with an extremely short
intramolecular Bi⋯Bi distance. Moreover, the oxidation of
dibismuthanes 5–8 has been accomplished using SO2Cl2, iso-
lating the corresponding pentavalent dibismuth tetrachlorides
9–12 in excellent yields. Studies on the catalytic redox pro-
perties of 5–8 revealed that the ligand backbone has a dra-
matic effect on the catalytic activity towards the oxidative clea-
vage of 1,2-diols. In this regard, dinuclear bismuthane 8 (with
a flexible backbone and a long Bi⋯Bi distance) does not
surpass the catalytic activity of triphenylbismuth. Further
studies on the possible synergistic effects of two Bi atoms in
the same complex towards catalytic redox processes are cur-
rently ongoing.
4 For pioneering examples of bimetallic Bi(II) complexes, see:
(a) F. A. Paneth, Trans. Faraday Soc., 1934, 30, 179–181;
(b) F. A. Paneth and H. Loleit, J. Chem. Soc., 1935, 366–371;
(c) A. J. Ashe III and E. G. Ludwig Jr., Organometallics, 1982,
1, 1408–1410; (d) G. Becker and M. Rößler, Z. Naturforsch.,
1982, 37b, 91–96; (e) H. J. Breunig and D. Müller, Angew.
Chem., Int. Ed. Engl., 1982, 21, 439–440; (f) F. Calderazzo,
A. Morvillo, G. Pelizzi and R. Poli, J. Chem. Soc., Chem.
Commun., 1983, 507–508.
5 For pioneering examples of bimetallic Bi(I) complexes, see:
(a) N. Tokitoh, Y. Arai, R. Okazaki and S. Nagase, Science,
1997, 277, 78–80; (b) B. Twamley, C. D. Sofield,
M. M. Olmstead and P. P. Power, J. Am. Chem. Soc., 1999,
121, 3357–3367; (c) M. Sakagami, T. Sasamori, H. Sakai,
Y. Furukawa and N. Tokitoh, Chem. – Asian J., 2013, 8, 690–
693; (d) D. Dange, A. Davey, J. A. B. Abdalla, S. Aldridge and
C. Jones, Chem. Commun., 2015, 51, 7128–7131.
6 (a) N. J. Holmes, W. Levason and M. Webster, J. Organomet.
Chem., 1999, 584, 179–184; (b) S. Yasuike, S. Okajima,
K. Yamaguchi, H. Seki and J. Kurita, Tetrahedron, 2003, 59,
4959–4966; (c) S. L. Benjamin, L. Karagiannidis,
W. Levason, G. Reid and M. C. Rogers, Organometallics,
2011, 30, 895–904; (d) J. Ramler, K. Hofmann and
C. Lichtenberg, Inorg. Chem., 2020, 59, 3367–3376.
Conflicts of interest
The authors declare no conflict of interest.
7 J.-C. Kizirian, Chem. Rev., 2008, 108, 140–205.
8 Phosphorus ligands in Asymmetric Catalysis: Synthesis and
Applications, ed. A. Börner, Wiley-VCH Verlag, Weinheim,
2004.
Acknowledgements
Financial support for this work was provided by Max-Planck-
Gesellschaft, Max-Planck-Institut für Kohlenforschung and
Fonds der Chemischen Industrie (FCI-VCI). This project has
received funding from European Union’s Horizon 2020
research and innovation programme under Agreement No.
850496 (ERC Starting Grant, J.C.). We thank Prof. Dr A.
Fürstner for in-sightful discussions and generous support. We
thank MS, GC and X-ray departments of Max-Planck-Institut
für Kohlenforschung for analytic support. We thank Dr R.
Goddard for X-ray crystallographic analysis. Open Access
funding provided by the Max Planck Society.
9 (a) M. D. Brown, W. Levason, G. Reid and M. Webster,
Dalton Trans., 2006, 1667–1674; (b) M. D. Brown,
W. Levason, G. Reid and M. Webster, Dalton Trans., 2006,
4039–4046; (c) M. D. Brown, W. Levason, G. Reid and
M. Webster, Dalton Trans., 2006, 5648–5654; (d) M. Hirai
and F. P. Gabbaï, Angew. Chem., Int. Ed., 2015, 54, 1205–
1209; (e) C.-H. Chen and F. P. Gabbaï, Angew. Chem., Int.
Ed., 2017, 56, 1799–1804; (f) C. Ganesamoorthy,
S. Heimann, S. Hölscher, R. Haack, C. Wölper, G. Jansen
and S. Schulz, Dalton Trans., 2017, 46, 9227–9234;
(g) C.-H. Chen and F. P. Gabbaï, Dalton Trans., 2018, 47,
12075–12078; (h) K. Dzialkowski, A. Gehlhaar, C. Wölper,
A. A. Auer and S. Schulz, Organometallics, 2019, 38, 2927–
2942; (i) M. Yang, M. Hirai and F. P. Gabbaï, Dalton Trans.,
2019, 48, 6685–6689; ( j) L. Li, Y. Zhang, Y. Li, Y. Duan,
Y. Qian, P. Zhang, Q. Guo and J. Ding, ACS Sens., 2020, 5,
3465–3473.
10 For examples of mixed phosphine-bismuthane organome-
tallics, see: (a) C. Tschersich, C. Limberg, S. Roggan,
C. Herwig, N. Ernsting, S. Kovalenko and S. Mebs, Angew.
Chem., Int. Ed., 2012, 51, 4989–4992; (b) T.-P. Lin, I.-S. Ke
and F. P. Gabbaï, Angew. Chem., Int. Ed., 2012, 51, 4985–
4988; (c) C. Tschersich, B. Braun, C. Herwig and
C. Limberg, J. Organomet. Chem., 2015, 784, 62–68;
(d) K. Materne, B. Braun-Cula, C. Herwig, N. Frank and
C. Limberg, Chem. – Eur. J., 2017, 23, 11797–11801;
Notes and references
1 (a) L. D. Freedman and G. O. Doak, Chem. Rev., 1982, 82,
15–57; (b) K. T. Mahmudov, A. V. Gurbanov, V. A. Aliyeva,
G. Resnati and A. J. L. Pombeiro, Coord. Chem. Rev., 2020,
418, DOI: 10.1016/j.ccr.2020.213381.
2 (a) D. H. R. Barton and J.-P. Finet, Pure Appl. Chem., 1987,
59, 937–946; (b) Bismuth-mediated Organic Reactions, in
Topics in Current Chemistry, ed. T. Ollevier, Springer, Berlin,
2012, vol. 311; (c) A. Gagnon, J. Dansereau and A. Le Roch,
Synthesis, 2017, 1707–1745; (d) K. Ruffell and L. T. Ball,
Trends Chem., 2020, 2, 867–869; (e) J. M. Lipshultz, G. Li
and A. T. Radosevich, J. Am. Chem. Soc., 2021, 143, 1699–
1721.
4928 | Org. Biomol. Chem., 2021, 19, 4922–4929
This journal is © The Royal Society of Chemistry 2021