Organometallics
COMMUNICATION
’ ACKNOWLEDGMENT
We are grateful to the NSERC of Canada and the SHARC-
’ REFERENCES
(1) Recent reviews: (a) Dobereiner, G. E.; Crabtree, R. H. Chem.
Rev. 2010, 110, 681. (b) Guillena, G.; Ramꢀon, D. J.; Yus, M. Chem. Rev.
2010, 110, 1611. (c) Crabtree, R. H. Organometallics 2011, 30, 17.
(d) van der Vlugt, J. I.; Reek, J. N. H. Angew. Chem., Int. Ed. 2009, 48, 8832.
(e) Friedrich, A.; Schneider, S. ChemCatChem 2009, 1, 72. (f) Watson,
A. J. A.; Williams, J. M. J. Science 2010, 329, 635. (g) Hamid, M. H. S. A.;
Slatford, P. A.; Williams, J. M. J. Adv. Synth. Catal. 2007, 349, 1555.
(2) (a) Zhang, J.; Gandelman, M.; Shimo, L. J. W.; Milstein, D. Dalton
Trans. 2007, 107. (b) Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. J. Am.
Chem. Soc. 2005, 127, 10840. (c) Musa, S.; Shaposhnikov, I.; Cohen, S.;
Gelman, D. Angew. Chem., Int. Ed. 2011, 50, 3533.
(3) Gnanaprakasam, B.; Zhang, J.; Milstein, D. Angew. Chem., Int. Ed.
2010, 49, 1468.
(4) (a) Hamid, M. H. S. A.; Allen, C. L.; Lamb, G. W.; Maxwell, A. C.;
Maytum, H. C.; Watson, A. J. A.; Williams, J. M. J. J. Am. Chem. Soc. 2009,
131, 1766. (b) Hamid, M. H. S. A.; Williams, J. M. J. Chem. Commun.
2007, 725. (c) Cami-Kobeci, G.; Slatford, P. A.; Whittlesey, M. K.;
Williams, J. M. J. Bioorg. Med. Chem. Lett. 2005, 535. (d) Fujita, K.;
Enoki, Y.; Yamaguchi, R. Tetrahedron 2008, 64, 1943. (e) Fujita, K.;
Tanino, N.; Yamaguchi, R. Org. Lett. 2007, 9, 109. (f) Prades, A.;
Corberan, R.; Poyatos, M.; Peris, E. Chem. Eur. J. 2008, 14, 11474.
(5) (a) Gunanathan, C.; Ben-David, Y.; Milstein, D. Science 2007,
317, 790. (b) Zweifel, T.; Naubron, J.-V.; Gr€utzmacher, H. Angew.
Chem., Int. Ed. 2009, 48, 559. (c) Nordstrøm, L. U.; Vogt, H.; Madsen, R.
J. Am. Chem. Soc. 2008, 130, 17672. (d) Muthaiah, S.; Ghosh, S. C.; Jee,
J.-E.; Chen, C.; Zhang, J.; Hong, S. H. J. Org. Chem. 2010, 75, 3002.
(e) Prades, A.; Peris, E.; Albrecht, M. Organometallics 2011, 30, 1162.
(f) Zhang, Y.; Chen, C.; Ghosh, S. C.; Li, Y.; Hong, S. H. Organometallics
2010, 29, 1374.
(6) (a) Tsuji, Y.; Huh, K.-T.; Ohsugi, Y.; Watanabe, Y. J. Org. Chem.
1985, 50, 1365. (b) Marsella, J. A. J. Organomet. Chem. 1991, 407, 97.
(c) Abbenhuis, R. A. T. M.; Boersma, J.; van Koten, G. J. Org. Chem.
1998, 63, 4282. (d) Fujita, K.-I.; Fujii, T.; Yamaguchi, R. Org. Lett. 2004,
6, 3525. (e) Eary, C. T.; Clasen, D. Tetrahedron Lett. 2006, 47, 6899.
(f) Nordstrøm, L. U.; Madsen, R. Chem. Commun. 2007, 5034.
(7) (a) Zweifel, T.; Naubron, J.-V.; B€uttner, T.; Ott, T.; Gr€utzmacher,
H. Angew. Chem., Int. Ed. 2008, 47, 3245. (b) Zweifel, T.; Scheschkewitz,
D.; Ott, T.; Vogt, M.; Gr€utzmacher, H. Eur. J. Inorg. Chem. 2009, 5561.
(8) Gr€utzmacher, H. Angew. Chem., Int. Ed. 2008, 47, 1814.
(9) (a) Danopoulos, A. A.; Wills, A. R.; Edwards, P. G. Polyhedron
1990, 9, 2413. (b) Major, Q.; Lough, A. J.; Gusev, D. G. Organometallics
2005, 24, 2492.(c) Bertoli, M.; Choualeb, A.; Gusev, D. G.; Lough, A. J.;
Major, Q.; Moore, B. Dalton Trans. 2011, DOI: 10.1039/c1dt10342c.
(10) (a) Hamilton, R. J.; Bergens, S. H. J. Am. Chem. Soc. 2006,
128, 13700. (b) Hamilton, R. J.; Bergens, S. H. J. Am. Chem. Soc. 2008,
130, 11979.
Figure 3. Calculated (mPW1k) structures of ts1ꢀts4. Selected bond
lengths (Å) and angles (deg): ts1, OsꢀN = 2.137, OꢀH1 = 1.252, Nꢀ
H1 = 1.216, OsꢀH2 = 2.044, C1ꢀH2 = 1.175, C1ꢀO = 1.347; ts2,OsꢀN=
2.190, OsꢀH2 = 1.805, C1ꢀH2 = 1.574, OꢀH1 = 1.717, NꢀH1 = 1.036,
C1ꢀO = 1.260; ts3, OsꢀN = 2.179, NꢀH1 = 1.503, OsꢀH1 = 1.824,
OsꢀH2 = 1.825, H1ꢀH2 = 0.956, NꢀOsꢀH1 = 43.0, NꢀOsꢀH2 = 73.3,
H1ꢀOsꢀH2 = 30.4; ts4, OsꢀN = 2.059, OsꢀH1 = 2.737, OsꢀH2 = 2.424,
H1ꢀH2 = 0.749, NꢀOsꢀH1 = 79.7, H1ꢀOsꢀH2 = 15.2.
3.9 kcal/mol). The slow rate of TH in ethanol is apparently due
to slow production of acetaldehyde for thermodynamic reasons,
despite the calculated rate-limiting barrier for the dehydrogenation
of ethanol by 9 (ΔH/ΔGq = ꢀ0.6/þ9.9 kcal/mol) being lower
than that (ts2 ΔH/ΔGq = 2.8/13.7 kcal/mol) for 2-propanol.
The dihydride 2 is stable with respect to thermal dehydro-
genation required for the regeneration of 9 in the ADC reac-
tion of Scheme 3c. According to PBE0 calculations, the reaction
2 f 9 þ H2 is unfavorable by ΔH/ΔG = 22.5/16.1 kcal/mol.
The dehydrogenation proceeds via the dihydrogen intermediate
trans-OsH(H2)(CO)[N(C2H4PiPr2)2] connecting the two tran-
sition states ts3 (ΔH/ΔGq = 31.2/30.9 kcal/mol) and ts4 (ΔH/
ΔGq = 29.1/25.3 kcal/mol) depicted in Figure 3.16 For 6, the
corresponding barriers are only marginally lower: ΔH/ΔGq =
28.9/29.2 (ts3-Ru) and ΔH/ΔGq = 26.3/22.3 kcal/mol (ts4-
Ru). These high energy barriers explain why the ADC reactions
with 2 and 6 proceed at an appreciable rate only upon heating
above 120 °C.
In summary, OsHCl(CO)[HN(C2H4PiPr2)2] and OsH2-
(CO)[HN(C2H4PiPr2)2] are excellent TH catalysts that also
demonstrate high efficiency for the reactions of amination and
dehydrogenative coupling of primary alcohols, producing sec-
ondary amines and symmetrical esters, respectively.
(11) Recent calculations suggested that water could lower the barrier
for H2 elimination from trans-RuH2(PMe3)[HN(C2H4PiPr2)2] by ca.
8 kcal/mol: Friedrich, A.; Drees, M.; auf der G€unne, J. S.; Schneider, S.
J. Am. Chem. Soc. 2009, 131, 17552.
(12) Clarke, Z. E.; Maragh, P. T.; Dasgupta, T. P.; Gusev, D. G.;
Lough, A. J.; Abdur-Rashid, K. Organometallics 2006, 25, 4113.
(13) Another NH3 alkylation catalyst efficient at 0.1 mol %:Gunanathan,
C.; Milstein, D. Angew. Chem., Int. Ed. 2008, 47, 8661.
’ ASSOCIATED CONTENT
S
Supporting Information. CIF files giving crystallo-
b
graphic data for 1, 2, and 7 and text and tables giving full
experimental and computational details. This material is available
(14) O, W. W. N.; Lough, A. J.; Morris, R. H. Organometallics 2011,
30, 1236.
(15) Similar findings were reported by Gr€utzmacher7a and Bi: Bi, S.;
Xie, Q.; Zhao, X.; Zhao, Y.; Kong, X. J. Organomet. Chem. 2008, 693, 633.
(16) Similar transition-state structures were calculated for H2 elim-
ination from trans-RuH2(PMe3)[HN(C2H4PiPr2)2].11
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: dgoussev@wlu.ca.
3482
dx.doi.org/10.1021/om200437n |Organometallics 2011, 30, 3479–3482