12728
J. Am. Chem. Soc. 1998, 120, 12728-12733
Formation of σ- and π-Type Dimer Radical Cations by the
Photochemical One-Electron Oxidation of Aromatic Sulfides
Hajime Yokoi, Akio Hatta, Katsuya Ishiguro, and Yasuhiko Sawaki*
Contribution from the Department of Applied Chemistry, Graduate School of Engineering,
Nagoya UniVersity, Chikusa-ku, Nagoya 464-8603, Japan
ReceiVed July 22, 1998
Abstract: The formation of dimer radical cations from aromatic sulfides has been studied by photochemical
one-electron oxidation in acetonitrile. When dicyanonaphthalene and thioanisole in acetonitrile were irradiated
with nanosecond laser flash (308 nm), two types of dimer radical cations were detected at 470 and 800 nm at
the expense of the monomer radical cation (520 nm). The intramolecular formation of similar radical ion
complexes was observed for the cases of 1,n-bis(phenylthio)alkanes with n ) 3 and 4, while bissulfides with
n ) 2, 6, and 8 showed radical cation spectra quite different from the above cases of n ) 3 and 4. These facts
indicate that dimer radical cations absorbing at around 460-500 nm are assigned as the σ-type complex of the
sulfur-sulfur three-electron bond and that radical cations absorbing at around 800 nm are of the π-type complex
associated with two phenylthio groups. For the case of p-methylthioanisole the formation of π-type dimer was
shown to be reduced owing to the steric hindrance of two methyl groups. No formation of dimer radical
cations was observed for cases of p-methoxythioanisole and diphenyl sulfide where the corresponding monomer
radical cations are stabilized by the delocalization of positive charge on the sulfur atom. The density functional
BLYP/6-31G* calculations on thioanisole predicted the existence of σ- and π-type dimer radical cations, in
accordance with the experimental observation of approximately equal stability.
Introduction
1,4-distonic dimer radical cations.8 An interesting structural
change of the dimer radical cation of trans-stilbene was reported
as the conversion of a face-to-face π-type dimer to the C-C
bonded σ-type dimer.6
Asmus et al. have demonstrated that the radical cations of
aliphatic sulfides are stabilized by forming the sulfur-sulfur
two-center three-electron bonded (i.e., σ-type) dimers.9 The
Organic radical cations are important intermediates in pho-
tochemical electron-transfer reactions, with attention being
focused on their structures and reactivities.1 In reactions
involving photoinduced electron transfers, some radical cations
are known to form dimer radical cations by association with
neutral, grand-state molecules. For example, dimer radical
cations of aromatic hydrocarbons have been shown to play an
important role in the back electron transfers taking place within
geminate ion pairs formed upon photoinduced electron trans-
fers.2,3 Such dimer radical cations are divided into two types.
One group of dimer radical cations is known as the π-type, in
which the radical cations are stabilized by the charge resonance
π-interaction with the neutral parent molecule.2-6 These π-type
dimers are also investigated as the simplest unit of π-stacked
systems in examining the transannular interactions, which are
important in numerous chemical and biological processes.5
Another type of dimer radical cation, known as the σ-type, has
a σ-bond with the neutral parent.7-10 For example, the one-
electron oxidation of aromatic olefines led to the formation of
(7) (a) Carmichael, I. Acta Chem. Scand. 1997, 51, 567-571. (b) Mayer,
P. M.; Keister, J. W.; Bear, T.; Evans, M.; Ng, C. Y.; Hsu, C.-W. J. Phys.
Chem. A 1997, 101, 1270-1276. (c) Maity, D. K.; Mohan, H.; Chatto-
padhyay, S.; Mittal, J. P. J. Phys. Chem. 1995, 99, 12195-12203. (d) Shoute,
L. C. T.; Neta, P. J. Phys. Chem. 1991, 95, 4411-4414. (e) Livant, P.;
Illies, A. J. Am. Chem. Soc. 1991, 113, 1510-1513. (f) Gebicki, J.;
Marcinek, A.; Stradowski, C. J. Phys. Org. Chem. 1990, 3, 606-610. (g)
Schneider, S.; Geiselhart, P.; Seel, G.; Lewis, F. D.; Dykstra, R. E.; Nepras,
M. J. J. Phys. Chem. 1989, 93, 3112-3117. (h) Symons, M. C. R.; Chandra,
H.; Alder, R. W. J. Chem. Soc., Chem. Commun. 1988, 844-845. (i) Gandhi,
N.; Wyatt, J. L.; Symons, M. C. R. J. Chem. Soc. Chem. Commun. 1986,
1424-1425. (j) Hub, W.; Schneider, S.; Do¨rr, F.; Oxman, J. D.; Lewis, F.
D. J. Am. Chem. Soc. 1984, 106, 701-708. (k) Hub, W.; Schneider, S.;
Do¨rr, F.; Oxman, J. D.; Lewis, F. D. J. Phys. Chem. 1983, 87, 4351-4353.
(8) (a) Schneider, S.; Geiselhart, P.; Seel, G.; Lewis, F. D.; Dykstra, R.
E.; Nepras, M. J. J. Phys. Chem. 1989, 93, 3112-3117. (b) Lewis, F. D.;
Kojima, M. J. Am. Chem. Soc. 1988, 110, 8664-8670. (c) Ledwith, A.
Acc. Chem. Res. 1972, 5, 133-139.
(1) (a) Fox, M. A.; Chanon, M., Eds. Photoinduced Electron Transfer;
Elsevier: Amsterdam, 1988; Parts A-D. (b) Mattay, J. Synthesis 1989,
233-252. (c) Bauld, N. L. Tetrahedron 1989, 45, 5307-5363. (d) Bauld,
N. L. AdV. Electron-Transfer Chem. 1992, 2, 1-66. (e) Yoon, U. C.;
Mariano, P. S. Acc. Chem. Res. 1992, 25, 233-240. (f) Roth, H. D. Top.
Curr. Chem. 1992, 163, 133-245.
(9) (a) Chaudhri, S. A.; Mohan, H.; Anklam, E.; Asmus, K.-D. J. Chem.
Soc., Perkin. Trans. 2 1996, 383-390. (b) James, M. A.; McKee, M. L.;
Illies, A. J. J. Am. Chem. Soc. 1996, 118, 7836-7842. (c) Sulfer-Centered
ReactiVe Intermediates in Chemistry and Biology; Chatgilialoglu, C., Asmus,
K.-D. Eds.; Plenum Press: New York, 1990. (d) Mo¨nig, J.; Goslich, R.;
Asmus, K.-D. J. Phys. Chem. 1986, 90, 115-121. (e) Bonifacic, M.; Asmus,
K.-D. J. Chem. Soc., Perkin 2 1980, 758-762. (f) Asmus, K.-D. Acc. Chem.
Res. 1979, 12, 436-442. (g) Gilbert, B. C.; Hodgeman, D. K. C.; Norman,
R. O. J. Chem. Soc., Perkin. Trans. 2 1973, 1748-1752.
(10) (a) Scho¨neich, C.; Asmus, K.-D.; Bonifacic, M. J. Chem. Soc.,
Faraday Trans. 1995, 91, 1923-1930. (b) Wardman, P. In Sulfur Centered
ReactiVe Intermediates in Chemistry and Biology; Chatgilialoglu, C., Asmus,
K.-D., Eds.; NATO Ser. A, 197; Plenum Press: New York, 1990; p 415.
(c) Wardman, P. In Glutathione Conjugation; Sies, H., Ketterer, B., Eds.;
Academic Press: New York, 1988; p 43. (d) Sonntag, C. von. The Chemical
Basis of Radiation Biology; Taylor and Francis: London, 1987.
(2) Gould, I. R.; Farid, S. J. Am. Chem. Soc. 1993, 115, 4814-4822.
(3) Vauthey, E. J. Phys. Chem. A 1997, 101, 1635-1639.
(4) (a) Mizuno, K.; Kagano, H.; Kasuga, T.; Otsuji, Y. Chem. Lett. 1983,
133-136. (b) Grellmann, K. H.; Suckow, U. Chem. Phys. Lett. 1975, 32,
250-254. (c) Rodgers, M. A. J. J. Chem. Soc., Faraday Trans. 1 1972, 68,
1278-1286. (d) Beens, H.; Weller, A. Chem. Phys. Lett. 1968, 2, 140-142.
(5) Terahara, A.; Ohya-Nishiguchi, H.; Hirota, N.; Oku, A. J. Phys. Chem.
1986, 90, 1564-1571 and references therein.
(6) Tojo, S.; Morishima, K.; Ishida, A.; Majima, T.; Takamuku, S. Bull.
Chem. Soc. Jpn. 1995, 68, 958-966.
10.1021/ja982595s CCC: $15.00 © 1998 American Chemical Society
Published on Web 11/25/1998