Angewandte
Chemie
the leaving-groupability of 3 is 105 to 106 times lower than
that of the bicyclic amines 1 and 2.
Acc. Chem. Res. 2003, 36, 66 – 77; d) H. Mayr, A. R. Ofial in
Carbocation Chemistry (Eds.: G. A. Olah, G. K. S. Prakash),
Wiley, Hoboken, 2004, chap. 13, pp. 331 – 358; e) H. Mayr, A. R.
Ofial, Pure Appl. Chem. 2005, 77, 1807 – 1821.
In summary, we can conclude that DABCO (1) and
quinuclidine (2) are significantly better nucleophiles than
DMAP (3) (by a factor of 103) but at the same time
significantly better nucleofuges (by a factor of 106 and 105,
respectively). What is the impact of these findings for
organocatalysis? It has been shown previously that the
relative reactivities of nucleophiles towards typical Michael
acceptors closely resemble those toward benzhydrylium
ions.[14] For that reason, the different properties of 1–3
described in Tables 2 and 3 can be expected to reflect their
efficiency in Baylis–Hillman reactions. Because of the higher
carbon basicity of DMAP (3), it will generally be superior to
DABCO (1) and quinuclidine (2), if reactivity is controlled by
the concentration of the intermediate ammonium ions
produced by the reactions of the amines with the electro-
philes.[1,15,16] If, however, reactivity is controlled by the rate of
the nucleophilic attack of the organocatalyst or by the release
of the amine component in the final stage of the reaction,
DABCO (1) and quinuclidine (2) will be superior.[1,15,16]
The fact that Baylis–Hillman reactions with cycloalke-
nones and acrylates are better catalyzed by DMAP (3) than
by the standard catalyst DABCO (1)[17] possibly reflects the
need for higher concentrations of the zwitterionic intermedi-
ates in these cases. The relevance of the kinetic and
thermodynamic data determined in this work for acylation
reactions is not yet known.
[5] a) F. Brotzel, B. Kempf, T. Singer, H. Zipse, H. Mayr, Chem. Eur.
J. 2007, 13, 336 – 345; b) B. Kempf, H. Mayr, Chem. Eur. J. 2005,
11, 917 – 927.
[6] a) S. Kobayashi, Y. Hari, T. Hasako, K. Koga, H. Yamataka, J.
Org. Chem. 1996, 61, 5274 – 5279; b) S. Kobayashi, T. Kitamura,
H. Taniguchi, W. Schnabel, Chem. Lett. 1983, 1117 – 1120; c) U.
Schmidhammer, S. Roth, E. Riedle, A. A. Tishkov, H. Mayr,
Rev. Sci. Instrum. 2005, 76, 093111.
[7] a) R. A. McClelland in Reactive Intermediate Chemistry (Eds.:
R. A. Moss, M. S. Platz, M. Jones, Jr.), Wiley, 2004, chap. 1,
pp. 3 – 40; b) P. K. Das, Chem. Rev. 1993, 93, 119 – 144; c) K.
Peters, Annu. Rev. Phys. Chem. 1987, 38, 253 – 270; d) R. A.
McClelland, V. M. Kanagasabapathy, N. S. Banait, S. Steenken,
J. Am. Chem. Soc. 1989, 111, 3966 – 3972; e) R. A. McClelland,
Tetrahedron 1996, 52, 6823 – 6858; f) R. A. McClelland, F. L.
Cozens, S. Steenken, T. L. Amyes, J. P. Richard, J. Chem. Soc.
Perkin Trans. 2 1993, 1717 – 1722; g) R. A. McClelland, V. M.
Kanagasabapathy, N. S. Banait, S. Steenken, J. Am. Chem. Soc.
1991, 113, 1009 – 1014; h) E. O. Alonso, L. J. Johnston, J. C.
Scaiano, V. G. Toscano, J. Am. Chem. Soc. 1990, 112, 1270 – 1271;
i) E. O. Alonso, L. J. Johnston, J. C. Scaiano, V. G. Toscano, Can.
J. Chem. 1992, 70, 1784 – 1794.
[8] a) J. Hine, R. D. Weimar, J. Am. Chem. Soc. 1965, 87, 3387 –
3396; b) E. M. Arnett, R. Reich, J. Am. Chem. Soc. 1980, 102,
5892 – 5902.
[9] R. Schmid, V. N. Sapunov, Non-formal Kinetics, VCH, Wein-
heim, 1982.
[10] a) M. Montalti, A. Credi, L. Prodi, M. T. Gandolfi, Handbook of
Photochemistry, 3rd ed., CRC Press, New York, 2006, p. 421;
b) W. P. Jencks, Acc. Chem. Res. 1980, 13, 161 – 169.
Received: April 5, 2007
[11] a) J. P. Richard, W. P. Jencks, J. Am. Chem. Soc. 1984, 106, 1383 –
1396; b) J. P. Richard, W. P. Jencks, J. Am. Chem. Soc. 1984, 106,
1373 – 1383; c) J. P. Richard, M. E. Rothenberg, W. P. Jencks, J.
Am. Chem. Soc. 1984, 106, 1361 – 1372; d) J. P. Richard, W. P.
Jencks, J. Am. Chem. Soc. 1982, 104, 4689 – 4691.
[12] Based on the nucleophilicity parameters we would expect the
reactions of 1 and 2 with 2,4-dinitrobenzofuroxan (E = ꢀ5.06,
from Ref. [12a]) to be very fast (perhaps reversible), with k >
109 mꢀ1 sꢀ1 at 208C , in contrast to a literature report (Ref. [12b])
which gives second-order rate constants of 0.78 and 0.21mꢀ1 sꢀ1
(in THF), respectively. We, therefore, agree with Cramptonꢀs
criticism of this work (Ref. [12c]): a) S. Lakhdar, M. West-
ermaier, F. Terrier, R. Goumont, T. Boubaker, A. R. Ofial, H.
Mayr, J. Org. Chem. 2006, 71, 9088 – 9095; b) C. Boga, L. Forlani,
J. Chem. Soc. Perkin Trans. 2 2001, 1408 – 1413; c) B. H. M.
Asghar, M. R. Crampton, Org. Biomol. Chem. 2005, 3, 3971 –
3978.
Published online: July 12, 2007
Keywords: kinetics · linear free energy relationships ·
.
nucleofugality · nucleophilicity · organocatalysis
[1] a) P. I. Dalko, Enantioselective Organocatalysis, Wiley-VCH,
Weinheim, 2007; b) A. Berkessel, H. Gröger, Asymmetric
Organocatalysis, Wiley-VCH, Weinheim, 2005; c) A. C. Spivey,
S. Arseniyadis, Angew. Chem. 2004, 116, 5552 – 5557; Angew.
Chem. Int. Ed. 2004, 43, 5436 – 5441; d) D. Basavaiah, A. J. Rao,
T. Satyanarayana, Chem. Rev. 2003, 103, 811 – 891; e) G. C. Fu,
Acc. Chem. Res. 2000, 33, 412 – 420; f) P. Langer, Angew. Chem.
2000, 112, 3177 – 3180; Angew. Chem. Int. Ed. 2000, 39, 3049 –
3052; g) S. E. Drewes, G. H. P. Roos, Tetrahedron 1988, 44,
4653 – 4670; h) G. Höfle, W. Steglich, H. Vorbrüggen, Angew.
Chem. 1978, 90, 602 – 615; Angew. Chem. Int. Ed. Engl. 1978, 17,
569 – 583.
[2] a) V. K. Aggarwal, I. Emme, S. Y. Fulford, J. Org. Chem. 2003,
68, 692 – 700; b) D. J. Maher, S. J. Connon, Tetrahedron Lett.
2004, 45, 1301 – 1305.
[3] a) J. E. Leffler, E. Grunwald, Rates and Equilibria of Organic
Reactions, Wiley, New York, 1963; b) A. Williams, Free Energy
Relationships in Organic Bio-organic Chemistry, The Royal
Society of Chemistry, Cambridge, 2003; c) J. M. Harris, S. P.
McManus, Nucleophilicity, American Chemical Society, Wash-
ington, 1987.
[13] a) R. A. Marcus, J. Phys. Chem. 1968, 72, 891 – 899; b) W. J.
Albery, Annu. Rev. Phys. Chem. 1980, 31, 227 – 263.
[14] a) T. Lemek, H. Mayr, J. Org. Chem. 2003, 68, 6880 – 6886;
b) A. R. Ofial, H. Mayr, Macromol. Symp. 2004, 215, 353 – 367.
[15] a) M. R. Heinrich, H. S. Klisa, H. Mayr, W. Steglich, H. Zipse,
Angew. Chem. 2003, 115, 4975 – 4977; Angew. Chem. Int. Ed.
2003, 42, 4826 – 4828; b) S. Xu, I. Held, B. Kempf, H. Mayr, W.
Steglich, H. Zipse, Chem. Eur. J. 2005, 11, 4751 – 4757; c) H.
Kasprzyk, S. Kinastowski, React. Kinet. Catal. Lett. 2002, 77, 3 –
12; d) G. C. Fu, Acc. Chem. Res. 2004, 37, 542 – 547.
[16] a) C. Faltin, E. M. Fleming, S. J. Connon, J. Org. Chem. 2004, 69,
6496 – 6499; b) J. Wu, X. Sun, Y. Li, Eur. J. Org. Chem. 2005,
4271 – 4275.
[17] a) F. Rezgui, M. M. El Gaied, Tetrahedron Lett. 1998, 39, 5965 –
5966; b) R. Octavio, M. A. de Souza, M. L. A. A. Vasconcellos,
Synth. Commun. 2003, 33, 1383 – 1399.
[4] a) H. Mayr, M. Patz, Angew. Chem. 1994, 106, 990 – 1010;
Angew. Chem. Int. Ed. Engl. 1994, 33, 938 – 957; b) H. Mayr, T.
Bug, M. F. Gotta, N. Hering, B. Irrgang, B. Janker, B. Kempf, R.
Loos, A. R. Ofial, G. Remennikov, H. Schimmel, J. Am. Chem.
Soc. 2001, 123, 9500 – 9512; c) H. Mayr, B. Kempf, A. R. Ofial,
Angew. Chem. Int. Ed. 2007, 46, 6176 –6179
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
6179