Communication
ChemComm
4 (a) H. Urakami, K. Zhang and F. Vilela, Chem. Commun., 2013,
49, 2353; (b) K. Zhang, D. Kopetzki, P. H. Seeberger, M. Antonietti
and F. Vilela, Angew. Chem., Int. Ed., 2013, 52, 1432; (c) K. Zhang,
Z. Vobecka, K. Tauer, M. Antonietti and F. Vilela, Chem. Commun.,
2013, 49, 11158; (d) D. Zheng, C. Pang, Y. Liu and X. Wang, Chem.
Commun., 2015, 51, 9706; (e) J. Zhang, M. Zhang, C. Yang and
X. Wang, Adv. Mater., 2014, 26, 4121; ( f ) G. Zhang, M. Zhang, X. Ye,
X. Qiu, S. Lin and X. Wang, Adv. Mater., 2014, 26, 805; (g) Y. Cui,
Z. Ding, X. Fu and X. Wang, Angew. Chem., Int. Ed., 2012, 51, 11814;
(h) Z. Lin and X. Wang, Angew. Chem., Int. Ed., 2013, 52, 1735;
(i) X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M.
Carlsson, K. Domen and M. Antonietti, Nat. Mater., 2009, 8, 76;
( j) J. Sun, J. Zhang, M. Zhang, M. Antonietti, X. Fu and X. Wang,
Nat. Commun., 2012, 1139.
5 (a) R. Palkovits, M. Antonietti, P. Kuhn, A. Thomas and F. Schu¨th,
Angew. Chem., Int. Ed., 2009, 48, 6909; (b) P. M. Budd, B. Ghanem,
K. Msayib, N. B. McKeown and C. Tattershall, J. Mater. Chem., 2003,
13, 2721.
6 Z. J. Wang, S. Ghasimi, K. Landfester and K. A. I. Zhang, Chem.
Mater., 2015, 27, 1921.
7 (a) X.-H. Li, M. Baar, S. Blechert and M. Antonietti, Sci. Rep., 2013,
3, 1743; (b) X.-H. Li, X. Wang and M. Antonietti, Chem. Sci., 2012, 3, 2170.
8 S. Rifai, C. A. Breen, D. J. Solis and T. M. Swager, Chem. Mater., 2006,
18, 21.
9 (a) H.-U. Blaser, H. Steiner and M. Studer, ChemCatChem, 2009,
1, 210; (b) J. P. Adams and J. R. Paterson, J. Chem. Soc., Perkin
Trans. 1, 2000, 3695.
10 L. Chen, Y. Honsho, S. Seki and D. Jiang, J. Am. Chem. Soc., 2010,
132, 6742.
11 (a) J.-X. Jiang, F. Su, A. Trewin, C. D. Wood, H. Niu, J. T. A. Jones,
Y. Z. Khimyak and A. I. Cooper, J. Am. Chem. Soc., 2008, 130, 7710;
(b) J.-X. Jiang, F. Su, A. Trewin, C. D. Wood, N. L. Campbell, H. Niu,
C. Dickinson, A. Y. Ganin, M. J. Rosseinsky, Y. Z. Khimyak and
A. I. Cooper, Angew. Chem., Int. Ed., 2007, 46, 8574.
amine products, and therefore facilitates their release from the
polymer surface.
To sum up, several major advantages of stability and func-
tionality have been demonstrated for this aldehyde-equipped
CPP system that is conveniently produced using a metal-free
strategy under mild reaction conditions. The stability is high-
lighted by the aqueous, alkaline and oxidative conditions in the
silver mirror reaction procedure, conditions that would readily
destroy MOFs, COFs and other less robust porous polymers.
The Ag nanoparticles produced in situ were found to be evenly
blended with the polymer matrix, offering highly efficient
heterogeneous catalysis for the reduction of aromatic nitro
compounds at room temperature. The selectivity and reusabi-
lity of the composite catalyst also further illustrate the in situ
generation of metal particles as a potentially wide-scope, effec-
tive method for enhancing the materials properties of polymer/
metal nanoparticle hybrids.
This work was supported by City University of Hong Kong
(Project 9667092), the Research Grants Council of HKSAR (GRF
Project 103413) and the National Natural Science Foundation of
China (21471037, 21201042). The X-ray diffractometer at YSU
was funded by NSF Grant 1337296. We thank Mr Yan Lung
Wong for drawing Fig. S9 (ESI†).
Notes and references
1 (a) F. Su, C. L. Bray, B. Tan and A. I. Cooper, Adv. Mater., 2008, 12 (a) J. Schmidt, M. Werner and A. Thomas, Macromolecules, 2009,
20, 2663; (b) J.-Y. Lee, C. D. Wood, D. Bradshaw, M. J. Rosseinsky
and A. I. Cooper, Chem. Commun., 2006, 2670; (c) C. D. Wood, B. Tan,
42, 4426; (b) J.-X. Jiang, F. Su, H. Niu, C. D. Wood, N. L. Campbell,
Y. Z. Khimyak and A. I. Cooper, Chem. Commun., 2008, 486.
A. Trewin, H. Niu, D. Bradshaw, M. J. Rosseinsky, Y. Z. Khimyak, 13 J. Schmidt, J. Weber, J. D. Epping, M. Antonietti and A. Thomas,
¨
N. L. Campbell, R. Kirk, E. Stockel and A. I. Cooper, Chem. Mater., 2007,
Adv. Mater., 2009, 21, 702.
19, 2034; (d) N. B. McKeown, P. M. Budd, K. J. Msayib, B. S. Ghanem, 14 J. Cui and Z. Xu, Chem. Commun., 2014, 50, 3986.
H. J. Kingston, C. E. Tattershall, S. Makhseed, K. J. Reynolds and 15 V. Guillerm, L. J. Weselinski, M. Alkordi, M. I. H. Mohideen,
D. Fritsch, Chem. – Eur. J., 2005, 11, 2610; (e) C. D. Wood, B. Tan,
A. Trewin, F. Su, M. J. Rosseinsky, D. Bradshaw, Y. Sun, L. Zhou and
Y. Belmabkhout, A. J. Cairns and M. Eddaoudi, Chem. Commun.,
2014, 50, 1937.
A. I. Cooper, Adv. Mater., 2008, 20, 1916; ( f ) J. Germain, F. Svec and 16 H. Borchert, E. V. Shevchenko, A. Robert, I. Mekis, A. Kornowski,
´
J. M. J. Frechet, Chem. Mater., 2008, 20, 7069.
2 J. Liu, K.-K. Yee, K. K.-W. Lo, K. Y. Zhang, W.-P. To, C.-M. Che and 17 (a) H. Cong, C. F. Becker, S. J. Elliott, M. W. Grinstaff and J. A. Porco,
G. Gru¨bel and H. Weller, Langmuir, 2005, 21, 1931.
Z. Xu, J. Am. Chem. Soc., 2014, 136, 2818.
3 F. Goettmann, A. Fischer, M. Antonietti and A. Thomas, Angew.
Chem., Int. Ed., 2006, 45, 4467.
J. Am. Chem. Soc., 2010, 132, 7514; (b) N. Pradhan, A. Pal and T. Pal,
Colloids Surf., A, 2002, 196, 247; (c) B. Baruah, G. J. Gabriel, M. J.
Akbashev and M. E. Booher, Langmuir, 2013, 29, 4225.
12200 | Chem. Commun., 2015, 51, 12197--12200
This journal is ©The Royal Society of Chemistry 2015