C O M M U N I C A T I O N S
Scheme 1. Synthesis of Truncated Ligand 2aa
allylic halides, methylallyl and crotylbromide, were successfully
added to acetophenone in similar enantiomeric ratios to that of allyl
bromide (entries 13 and 14). A modest diastereoselection is
observed for the addition of crotylbromide favoring the anti isomer
(3.8:1).
In summary, by using a modular catalyst design, key structural
features responsible for improving asymmetric induction were
systematically tested. Evaluating ligand relative stereochemistry
revealed that the oxazoline module had little effect on asymmetric
catalysis. Therefore, a truncated ligand was synthesized and found
to be highly effective for the first example of a chromium-catalyzed
enantioselective addition of allylic bromides to aryl ketones.
Currently, we are applying this approach to further explore and
understand the influence of systematic structural changes on
enantioselective outcomes and applying this knowledge to improv-
ing the scope of enantioselective ketone allylation as well as
investigating other synthetically useful transformations.
a Reagents and conditions: (a) isobutyl chloroformate, NMM, CH2Cl2
(95%); (b) glycinol, PhCH3/THF, reflux (95%); (c) PPh3, DIAD, CH2Cl2
(85%).
Table 1. Substrate Scope
Acknowledgment. This work was supported by the National
Science Foundation through a CAREER award to M.S.S. (CHE-
0132905). M.S.S. thanks the Dreyfus Foundation (Teacher-Scholar)
and Pfizer for their support.
Supporting Information Available: Ligand synthesis, catalytic
procedures, and enantiomeric excess determination. This material is
References
(1) For reviews of enantioselective carbonyl allylation, see: (a) Yamamoto,
Y. Acc. Chem. Res. 1987, 20, 243-249. (b) Marshall, J. A. Chem. ReV.
1996, 96, 31-47. (c) Denmark, S. E.; Fu, J. Chem. ReV. 2003, 103, 2763-
2793.
(2) For examples of enantioselective aldehyde allylation, see: (a) Costa, A.
L.; Piazza, M. G.; Tagliavini, E.; Trombini, C.; Umani-Ronchi, A. J. Am.
Chem. Soc. 1993, 115, 7001-7002. (b) Keck, G. E.; Tarbet, K. H.; Geraci,
L. S. J. Am. Chem. Soc. 1993, 115, 8467-8468. (c) Yanagisawa, A.;
Nakashima, H.; Ishiba, A.; Yamamoto, H. J. Am. Chem. Soc. 1996, 118,
4723-4724. (d) Inoue, M.; Suzuki, T.; Nakada, M. J. Am. Chem. Soc.
2003, 125, 1140-1141. (e) Xia, G.; Yamamoto, H. J. Am. Chem. Soc.
2006, 128, 2554-2555.
(3) For examples of enantioselective ketone allylation using boranes, see: (a)
Wada, R.; Oisaki, K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2004,
126, 8910-8911. (b) Lou, S.; Moquist, P. N.; Schaus, S. E. J. Am. Chem.
Soc. 2006, 128, 12660-12661.
(4) For examples of enantioselective ketone allylation using stannanes, see:
(a) Casolari, S.; D’Addario, D.; Tagliavini, E. Org. Lett. 1999, 1, 1061-
1063. (b) Hamasaki, R.; Chounan, Y.; Horino, H.; Yamamoto, Y.
Tetrahedron Lett. 2000, 41, 9883-9887. (c) Kamble, R. M.; Singh, V.
K. Tetrahedron Lett. 2001, 42, 7525-7526. (d) Waltz, K. M.; Gavenonis,
J.; Walsh, P. J. Angew. Chem., Int. Ed. 2002, 41, 3697-3699. (e)
Cunningham, A.; Mokal-Parekh, V.; Wilson, C.; Woodward, S. Org.
Biomol. Chem. 2004, 2, 741-748. (f) Kim, J. G.; Waltz, K. M.; Garcia,
I. F.; Kwiatkowski, D.; Walsh, P. J. J. Am. Chem. Soc. 2004, 126, 12580-
12585. (g) Teo, Y.-C.; Goh, J.-D.; Loh, T.-P. Org. Lett. 2005, 7, 2743-
2745. (h) Liu, L.-Y.; Tang, L.; Yu, L.; Chang, W.-X.; Li, J. Tetrahedron
2005, 61, 10930-10934. (i) Lu, J.; Hong, M.-L.; Ji, S.-J.; Teo, Y.-C.;
Loh, T.-P. Chem. Commun. 2005, 4217-4218. (j) Wooten, A. J.; Kim, J.
G.; Walsh, P. J. Org. Lett. 2007, 9, 381-384.
(5) For examples of enantioselective ketone allylation using silanes, see: (a)
Tietze, L. F.; Schiemann, K.; Wegner, C. J. Am. Chem. Soc. 1995, 117,
5851-5852. (b) Yamasaki, S.; Fujii, K.; Wada, R.; Kanai, M.; Shibasaki,
M. J. Am. Chem. Soc. 2002, 124, 6536-6537. (c) Wadamoto, M.;
Yamamoto, H. J. Am. Chem. Soc. 2005, 127, 14556-14557.
(6) For examples of stoichiometric enantioselective ketone allylations using
allylic halides, see: (a) Loh, T.-P.; Zhou, J.-R.; Li, X.-R. Tetrahedron
Lett. 1999, 40, 9333-9336. (b) Yamada, K.; Tozawa, T.; Nishida, M.;
Mukaiyama, T. Bull. Chem. Soc. Jpn. 1997, 70, 2301-2308.
(7) Fu¨rstner, A. Chem. ReV. 1999, 99, 991-1045.
a Average of at least two experiments. b Determined either by GC or
HPLC equipped with a chiral stationary phase. c Ethyl levulinate was used
as the ketone substrate.
(8) Lee, J.-Y.; Miller, J. J.; Hamilton, S. S.; Sigman, M. S. Org. Lett. 2005,
7, 1837-1839.
(9) Rajaram, S.; Sigman, M. S. Org. Lett. 2002, 4, 3399-3401.
(10) Anderson, G. W.; Zimmerman, J. E.; Callahan, F. M. J. Am. Chem. Soc.
1967, 89, 5012-5017.
(11) Wipf, P.; Miller, C. P. Tetrahedron Lett. 1992, 33, 6267-6270.
(12) See Supporting Information for details.
changing the nature of the non-aryl substituent does not erode the
observed enantioselectivity and the highest ER is observed in
entry 8. In contrast, poor enantiomeric ratios are observed for
aliphatic ketones (entries 11 and 12) though it is important to
highlight that the facial selection in these cases is reversed.12 Other
JA068915M
9
J. AM. CHEM. SOC. VOL. 129, NO. 10, 2007 2753