2700
E. Gendaszewska-Darmach et al. / Bioorg. Med. Chem. Lett. 22 (2012) 2698–2700
1012.8 nM, respectively). The same preference was demonstrated
in the case of corresponding sulfur analogues (2a and 2d), however
their inhibitory potency was even lower (IC50 = 2410.1 nM and
2418.0 nM, respectively). The most significant ATX inhibition
(IC50 = 220.2 nM) was observed for 1e (1-O-oleoyl-2-OMe-LPA). It
Acknowledgement
This work was supported by a Grant (PBZ-MNiSW-07/I/2007)
from the Polish Ministry of Science and Higher Education and a
Grant (2011/01/B/ST5/06383) from the National Science Centre.
was comparable with that of known ATX inhibitors, a-bromometh-
ylene phosphonate LPA (BrP-LPA) and unmethylated 1-O-oleoyl-
LPA.6 Replacement of one phosphate oxygen atom with sulfur
(2e) resulted in a slightly higher IC50 value (355.6 nM).
Supplementary data
Supplementary data (experimental procedures, characteriza-
tion data) associated with this article can be found, in the online
Recent studies have demonstrated that several ectoenzymes lo-
cated on the extracellular side of the cell plasma membrane cata-
lyze hydrolysis of LPA thus limiting its potential usefulness as
drugs. The degradation of extracellular LPA can be mainly attrib-
uted to the ectophosphatase activity of plasma membrane lipid
phosphate phosphatases (LPPs). The second LPA conversion path-
way involves the action of lysophosphatidic acid acyltransferases
(LPAAT) catalyzing the transfer of an acyl group from acyl-CoA to
LPA to form phosphatidic acid (PA).10 It was hypothesized that
thiophosphate substitution may confer resistance to LPP-mediated
degradation in the case of the ester-linked thiophosphate deriva-
tive (1-oleoyl-2-O-methyl-rac-glycerophosphothionate, OMPT).19a
It is known that the rate of hydrolysis of a phosphate ester by alka-
line phosphatase is independent of ester group and for example,
nucleoside 50-phosphorothioates are degraded 2000 times slower
than the corresponding phosphates.25 It was also proved that an-
other phosphorothioate synthetic analogue of LPA, octadecenyl
thiophosphate (OTP) was resistant to LPP1 phosphatase activity
derived from mouse embryonic fibroblasts.26 Recently, we have
also described the chemical synthesis of new sulfur analogues of
lysophospholipids, including phosphorothioate/phosphorodithio-
ate derivatives of 2-OMe-LPA.11 Therefore, we have examined
References and notes
1. Umezu-Goto, M.; Kishi, Y.; Taira, A.; Hama, K.; Dohmae, N.; Takio, K.; Yamori,
T.; Mills, G. B.; Inoue, K.; Aoki, J.; Arai, H. J. Cell. Biol. 2002, 158, 227.
2. Tokumura, A.; Majima, E.; Kariya, Y.; Tominaga, K.; Kogure, K.; Yasuda, K.;
Fukuzawa, K. J. Biol. Chem. 2002, 277, 39436.
3. Tsuda, S.; Okudaira, S.; Moriya-Ito, K.; Shimamoto, C.; Tanaka, M.; Aoki, J.; Arai,
H.; Murakami-Murofushi, K.; Kobayashi, T. J. Biol. Chem. 2006, 281, 26081.
4. Euer, N.; Schwirzke, M.; Evtimova, V.; Burtscher, H.; Jarsch, M.; Tarin, D.;
Weidle, U. H. Anticancer Res. 2002, 22, 733.
5. van Meeteren, L. A.; Ruurs, P.; Christodoulou, E.; Goding, J. W.; Takakusa, H.;
Kikauchi, K.; Perrakis, A.; Nagano, T.; Moolnaar, W. H. J. Biol. Chem. 2005, 280,
21155.
6. Jiang, G.; Xu, Y.; Fujiwara, Y.; Tsukahara, R.; Tsukahara, T.; Gajewiak, J.; Tigyi,
G.; Prestwich, G. D. Chem. Med. Chem. 2007, 2, 679.
7. Cui, P.; Tomsig, J. L.; McCalmont, W. F.; Lee, S.; Becker, C. J.; Lynch, K. R.;
Macdonald, T. L. Bioorg. Med. Chem. Lett. 2007, 17, 1634.
8. Cui, P.; McCalmont, W. F.; Tomsig, J. L.; Lynch, K. R.; Macdonald, T. L. Bioorg.
Med. Chem. 2008, 16, 2212.
9. Zhang, H.; Xu, X.; Gajewiak, J.; Tsukahara, R.; Fujiwara, Y.; Liu, J.; Fells, J. I.;
Perygin, D.; Parrill, A. L.; Tigyi, G.; Prestwich, G. D. Cancer Res. 2009, 69, 5441.
10. Gendaszewska-Darmach, E. Acta Biochim. Pol. 2008, 55, 227.
11. Rytczak, P.; Koziołkiewicz, M.; Okruszek, A. New J. Chem. 2010, 34, 1008.
12. Ferry, G.; Moulharat, N.; Pradere, J. P.; Desos, P.; Try, A.; Genton, A.; Giganti, A.;
Beucher-Gaudin, M.; Lonchampt, M.; Bertrand, M.; Saulnier-Blache, J. S.;
Tucker, G. C.; Cordi, A.; Boutin, J. A. J. Pharmacol. Exp. Ther. 2008, 327, 809.
13. Jiang, G.; Madan, D.; Prestwich, G. D. Bioorg. Med. Chem. Lett. 2011, 21, 5098.
14. Albers, H. M.; Ovaa, H. Chem. Rev. 2012, [Epub ahead of print].
15. Albers, H. M.; Dong, A.; van Meeteren, L. A.; Egan, D. A.; Sunkara, M.; van
Tilburg, E. W.; Schuurman, K.; van Tellingen, O.; Morris, A. J.; Smyth, S. S.;
Moolenaar, W. H.; Ovaa, H. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 7257.
16. Albers, H. M.; Hendrickx, L. J.; van Tol, R. J.; Hausmann, J.; Perrakis, A.; Ovaa, H.
J. Med. Chem. 2011, 54, 4619.
17. Gierse, J.; Thorarensen, A.; Beltey, K.; Bradshaw-Pierce, E.; Cortes-Burgos, L.;
Hall, T.; Johnston, A.; Murphy, M.; Nemirovskiy, O.; Ogawa, S.; Pegg, L.; Pelc,
M.; Prinsen, M.; Schnute, M.; Wendling, J.; Wene, S.; Weinberg, R.; Wittwer, A.;
Zweifel, B.; Masferrer, J. J. Pharmacol. Exp. Ther. 2010, 334, 310.
18. Mills, G. B.; Moolenaar, W. H. Nat. Rev. Cancer 2003, 3, 582.
19. (a) Hasegawa, Y.; Erickson, J. R.; Goddard, G. J.; Yu, S.; Liu, S.; Cheng, K. W.;
Aoki, J.; Jarosz, R.; Schrier, A. D.; Lynch, K. R.; Mills, G. B.; Fang, X. J. Biol. Chem.
2003, 278, 11962; (b) Qian, L.; Xu, Y.; Hasegawa, Y.; Aoki, J.; Mills, G. B.;
Prestwich, G. D. J. Med. Chem. 2003, 46, 5575.
20. Lok, C. M.; Mank, A. P. J.; Ward, J. P. Chem. Phys. Lipids 1985, 36, 329.
21. Xu, Y.; Qian, L.; Prestwich, G. D. Org. Lett. 2003, 5, 2267.
22. Aoyama, T.; Shiori, T. Tetrahedron Lett. 1990, 38, 5507.
23. Uhlman, E.; Engels, J. Tetrahedron Lett. 1986, 27, 1023.
24. Sekine, M.; Tsuruoka, H.; Iimura, S.; Wada, T. Nat. Prod. Lett. 1994, 5, 41.
25. Eckstein, F. Angew. Chem. Int. Ed. Engl. 1975, 14, 160.
26. Deng, W.; Shuyu, E.; Tsukahara, R.; Valentine, W. J.; Durgam, G.; Gududuru, V.;
Balazs, L.; Manickam, V.; Arsura, M.; VanMiddlesworth, L.; Johnson, L. R.;
Parrill, A. L.; Miller, D. D.; Tigyi, G. Gastroenterology 2007, 132, 1834.
27. Murphy, J.; Riley, J. P. Analytica Chim. Acta 1962, 27, 31.
unmodified 1-O-oleoyl-LPA,
a-bromomethylene phosphonate LPA
and the most active 1-O-acyl-2-OMe-derivative of LPA (1e) for their
resistance toward degradation by alkaline phosphatase isolated
from bovine intestinal mucosa. We have measured the amount of
inorganic phosphate liberated from the substrate according to
modified phosphomolybdate blue assay.27 Unfortunately, we
couldn’t apply this method to 1-O-oleoyl-2-OMe-phosphorothioate
(2e) since inorganic phosphorothioate does not form a blue ammo-
nium molybdate complex.25 Unmethylated 1-O-oleoyl-LPA was
completely dephosphorylated after 24 h of incubation at 37 °C
with the enzyme. However, 1-O-oleoyl-2-OMe-LPA (1e) was found
to be completely resistant toward alkaline phosphatase under
identical conditions, similarly to BrP-LPA. These observations sug-
gest that introduction of methyl group into sn-2 position of LPA
may also protect LPA analogues against the action of lysophospho-
lipid phosphatases in vivo.
In summary, our studies demonstrate that the most significant
ATX inhibition was observed for 1-O-oleoyl-2-OMe-LPA (1e), and
this compound was also resistant to the action of alkaline phospha-
tase what makes it the best candidate as autotaxin inhibitor among
2-OMe-LPA analogues studied.