10.1002/anie.201901771
Angewandte Chemie International Edition
COMMUNICATION
[4]
a) P. Orecchia, W. Yuan, M. Oestreich, Angew. Chem. Int. Ed. 2019, 58,
1; b) M. Kim, Y. Su, A. Fukuoka, E.J.M. Hensen, K. Nakajima, Angew.
Chem. Int. Ed. 2018, 57, 8235; c) W. Liu, Y. Chen, H. Qi, L. Zhang, W.
Yan, X. Liu, X. Yang, S. Miao, W. Wang, C. Liu, A. Wang, J. Li, T.
Zhang, Angew. Chem. Int. Ed. 2018, 57, 7071; d) J. An, Y. Wang, J. Lu,
J. Zhang, Z. Zhang, S. Xu, X. Liu, T. Zhang, M. Gocyla, M. Heggen, R.
E. Dunin-Borkowski, P. Fornasiero, F. Wang, J. Am. Chem. Soc. 2018,
140, 4172.
charged Mn5c stie, which is more facile to adsorb and
activate the NH3 with lone pair eletrons. This charge
difference is consistent with the features of Mn K-edge
XANES spectra (Figure 2c inset), where the Mn3+/Mn4+ of K-
α-MnO2 tend to move more postive valence weakly.
In summary, an unexpected phenomenon was found and
demonstrated here about the alkali metal involved NH3-SCR
catalysts. As an example, after insertion of 4.22 wt% K+ (a
common posion agent) in the tunnels, the so-called K-α-
MnO2 exhibited much better deNOx performance than that of
pristine α-MnO2 in the temperature of 50-200 oC (100 %
conversion vs. 50.6 % conversion at 150 °C). Spectroscopic
and theoretical methods were then performed to study the
atomic role of K+ in the NH3-SCR. Results showed that K+ in
the tunnels coordinated with eight nearby Osp3 atoms and
then making the charge rearrangement of nearby Mn and O
atoms via the columbic interactions. That resulted in more
positively charged topmost five-coordinated unsaturated Mn
cations (Mn5c, the Lewis acid site). Therefore, these more
positively charged Mn5c would better adsorb and activate the
NH3 molecules, which is crucial for the subsquent reaction
steps confirmed by in situ DRIFT spectra. This work is
beneficial for further understanding the atomic role of alkali
metals in Lewis acid sites dominated catalysis. Besides, it
also offers a kind of potential NH3-SCR catalyst with
excellent performance at low temperature.
[5]
[6]
a) L. Chen, J. Li, M. Ge, Chem. Eng. J. 2011, 170, 531; b) Y. Peng, J.
Li, L. Chen, J. Chen, J. Han, H. Zhang, W. Han, Environ. Sci. Technol.
2012, 46, 2864; c) S. Cimino, G. Totarella, M. Tortorelli, L. Lisi, Chem.
Eng. J. 2017, 330, 92.
a) Z. Huang, X. Gu, W. Wen, P. Hu, M. Makkee, H. Lin, F. Kapteijn, X.
Tang, Angew. Chem. Int. Ed. 2013, 52, 660; b) P. Hu, Z. Huang, X. Gu,
F. Xu, J. Gao, Y. Wang, Y. Chen, X. Tang, Environ. Sci. Technol. 2015,
49, 7042; c) G. Zhu, J. Zhu, W. Li, W. Yao, R. Zong, Y. Zhu, Q. Zhang,
Environ. Sci. Technol. 2018, 52, 8684.
[7]
[8]
S. Rong, P. Zhang, F. Liu, Y. Yang, ACS Catal. 2018, 8, 3435.
Y. Yuan, A. Nie, G. M. Odegard, R. Xu, D. Zhou, S. Santhanagopalan,
K. He, H. Asayesh-Ardakani, D. D. Meng, R. F. Klie, C. Johnson, J. Lu,
R. Shahbazian-Yassar, Nano Lett. 2015, 15, 2998.
[9]
L. T. Tseng, Y. Lu, H. M. Fan, Y. Wang, X. Luo, T. Liu, P. Munroe, S. Li,
J. Yi, Sci. Rep. 2015, 5, 9094.
[10] Y. Yuan, C. Zhan, K. He, H. Chen, W. Yao, S. Sharifi-Asl, B. Song, Z.
Yang, A. Nie, X. Luo, H. Wang, S.M. Wood, K. Amine, M.S. Islam, J. Lu,
R. Shahbazian-Yassar, Nat. Commun. 2016, 7, 13374.
[11] D. Liu, C. Wang, Y. Yu, B.H. Zhao, W. Wang, Y. Du, B. Zhang, Chem
2018, 5, 1.
[12] a) N. Bingwa, S. Bewana, M. J. Ndolomingo, N. Mawila, B. Mogudi, P.
Ncube, E. Carleschi, B. P. Doyle, M. Haumann, R. Meijboom, Appl.
Catal. A 2018, 555, 189; b) Z. Zhao, R. Yu, R. Zhao, C. Shi, H. Gies,
F.-S. Xiao, D. De Vos, T. Yokoi, X. Bao, U. Kolb, M. Feyen, R. McGuire,
S. Maurer, A. Moini, U. Müller, W. Zhang, Appl. Catal. B 2017, 217, 421.
[13] a) F. Liu, W. Shan, Z. Lian, L. Xie, W. Yang, H. He, Catal. Sci. &
Technol. 2013, 3; b) A. Marberger, D. Ferri, M. Elsener, O. Krocher,
Angew. Chem. Int. Ed. 2016, 55, 11989.
Acknowledgements
The authors gratefully acknowledged the financially
support by the Natural Science Foundation of China as
general projects (grant Nos. 21722702 and 21872102), and
the Tianjin Commission of Science and Technology as key
technologies R&D projects (grant Nos. 16YFXTSF00440,
16ZXGTSF00020, 16YFZCSF00300, 18YFZCSF00730,
18YFZCSF00770 and 18ZXSZSF00230). The authors
acknowledged Prof. J. Luo for the STEM measurements.
[14] a) J.W. Shi, Z. Fan, C. Gao, G. Gao, B. Wang, Y. Wang, C. He, C. Niu,
ChemCatChem 2018, 10, 2833; b) G.Z. He, Z.H. Lian, Y.B. Yu, Y. Yang,
K. Liu, X.Y. Shi, Z.D. Yan, W.P. Shan, H. He, Sci. Adv. 2018, 4, 4637.
[15] J. Liu, Y. Wei, P.-Z. Li, P. Zhang, W. Su, Y. Sun, R. Zou, Y. Zhao, ACS
Catal. 2018, 8, 3865.
[16] H. Yuan, N. Sun, J. Chen, J. Jin, H. Wang, P. Hu, ACS Catal. 2018, 8,
9269.
Keywords: atomic insights • alkali metal • Lewis acid sites •
NH3-SCR • charge rearrangement
[1]
a) M. Amoyal, R. Vidruk-Nehemya, M.V. Landau, M. Herskowitz, J.
Catal. 2017, 348, 29; b) M. Yang, S. Li, Y. Wang, J.A. Herron, Y. Xu, L.
F. Allard, S. Lee, J. Huang, M. Mavrikakis, M. Flytzani-Stephanopoulos,
Science 2014, 346, 1498; c) M. Kusche, F. Enzenberger, S. Bajus, H.
Niedermeyer, A. Bosmann, A. Kaftan, M. Laurin, J. Libuda, P.
Wasserscheid, Angew. Chem. Int. Ed. 2013, 52, 5028; d) A. Kaftan, M.
Kusche, M. Laurin, P. Wasserscheid, J. Libuda, Appl. Catal. B 2017,
201, 169; e) X. Chen, M. Chen, G. He, F. Wang, G. Xu, Y. Li, C. Zhang,
H. He, J. Phys. Chem. 2018, 122, 27331; f) J. Anton, J. Nebel, H. Song,
C. Froese, P. Weide, H. Ruland, M. Muhler, S. Kaluza, J. Catal. 2016,
335, 175; g) H. Wang, W. Guo, Z. Jiang, R. Yang, Z. Jiang, Y. Pan,
W.F. Shangguan, J. Catal. 2018, 361, 370.
[2]
[3]
a) Y. Ding, X. Huang, X. Yi, Y. Qiao, X. Sun, A. Zheng, D.S. Su, Angew.
Chem. Int. Ed. 2018, 57, 13800; b) J. H. Docherty, J. Peng, A.P.
Dominey, S. P. Thomas, Nat. Chem. 2017, 9, 595.
a) T. Kitanosono, P. Xu, S. Kobayashi, Science 2018, 362, 311; b) M.
W. Schreiber, C.P. Plaisance, M. Baumgartl, K. Reuter, A. Jentys, R.
Bermejo-Deval, J.A. Lercher, J. Am. Chem. Soc. 2018, 140, 4849; c) J.
Chen, Y. Gao, B. Wang, T.L. Lohr, T.J. Marks, Angew. Chem. Int. Ed.
2017, 56, 15964.
This article is protected by copyright. All rights reserved.