252
ALMUSAITEER, CHUANG, AND TAN
of 1 : 1 over Rh+(CO)2 at 573 K caused the disappearance
of Rh+(12CO)2 at 2091 and 2020 cm 1, the appearance of
Rh+(13CO)2 at 2048 and 1987 cm 1, and 12CO2/13CO2 for-
mation. The significant broadening of the band in the 1950-
8. Basu, P., Panayotov, D., and Yates, J. T., Jr., J. Am. Chem. Soc. 110,
2074 (1988).
9. Dictor, R., J. Catal. 109, 89 (1988).
10. Li, Y. E., and Gonzalez, R. D., J. Phys. Chem. 92, 1589 (1988).
11. Buchanan, D. A., Hemandez, M. E., Solymosi, F., and Whit, J. M.,
J. Catal. 125, 456 (1990).
1
to 2070-cm region indicates the formation of Rh0–12CO
and Rh0–13CO species during the 13CO/air pulse. Depletion 12. Paul, D. K., and Yates, J. T., Jr., J. Phys. Chem. 95, 1699 (1991).
of Rh+(12CO)2 and formation of Rh0–12CO, Rh0–13CO, and
13. Logan, A. D., Sharoudi, K., and Datye, A. K., J. Phys. Chem. 95, 5568
(1991).
12CO2 clearly indicates that the presence of gaseous 13CO
14. Anderson, J. A., J. Chem. Soc., Faraday Trans. 87, 3907 (1991).
15. Chuang, S. S. C., and Pien, S. I., J. Catal. 135, 618 (1992).
16. Srinivas, G., Chuang, S. S. C., and Debnath, S., J. Catal. 148, 748 (1994).
promotesthe formation ofRh0 sites, facilitatingthe reaction
between Rh+(12CO)2 and adsorbed oxygen to form 12CO2.
17. Krishnamurthy, R., and Chuang, S. S. C., J. Phys. Chem. 99, 16727
(1995).
CONCLUSIONS
18. Berko, A., Menesi, G., and Solymosi, F., J. Phys. Chem. B 100, 17732
(1996).
Sufficiently high concentrations of both Rh0 and Rh+ as
well as both the adsorbed reductant and oxidant are needed
19. Novak, E., Sprinceana, D., and Solymosi, F., Appl. Catal. A 149, 89
(1997).
to initiate and sustain the redox cycle of the NO–CO and
CO–O2 reactions on the Rh catalyst. Results of this study
suggest that the reactivity of adsorbates can only be reli-
ably measured under conditions where all the reactants are
present on the catalyst. Studies involving exposure of the
first reactant adsorbate to the second or third reactant may
20. Conners, L., Hollis, T., Johnson, D. A., and Blyholder, G., J. Phys.
Chem. B 102, 10112 (1998).
21. Oh, S. H., Fisher, G. B., Carpenter, J. E., and Goodman, D. W., J. Catal.
100, 360 (1986).
22. Cho, B. K., Shanks, B. H., and Bailey, J. E., J. Catal. 109, 89 (1989).
23. Taylor, K. C., Catal. Rev.-Sci. Eng. 35, 457 (1993).
24. Shelef, M., Catal. Rev.-Sci. Eng. 36, 443 (1994).
not provide information directly relevant to heterogeneous 25. Simon Ng, K. Y., Belton, D. N., Schmieg, S. J., and Fisher, G. B.,
J. Catal. 146, 394 (1994).
26. Lamb, H. H., Gates, B. C., and Knozinger, H., Angew. Chem., Int. Ed.
Engl. 27, 1127 (1988).
catalysis of redox reactions.
ACKNOWLEDGMENT
27. Ichikawa, M., in “Advances in Catalysis,” Vol. 38, p. 283. Academic
Press, New York, 1992.
28. Chuang, S. S. C., and Debnath, S., J. Mol. Catal. 79, 323 (1993).
29. Srinivas, G., and Chuang, S. S. C., J. Phys. Chem. 98, 3031 (1994).
The authors gratefully acknowledge the support of this research by the
National Science Foundation under Grant CTS-942111996.
30. Chuang, S. S. C., Srinivas, G., and Mukherjee, A., J. Catal. 139, 490
REFERENCES
(1993).
31. Krishnamurthy, R., Chuang, S. S. C., and Balakos, M. W., J. Catal. 157,
512 (1995).
32. Chuang, S. S. C., and Tan, C. D., J. Catal. 173, 104 (1998).
33. Almusaiteer, A. K., and Chuang, S. S. C., J. Catal. 180, 161 (1998).
34. Chuang, S. S. C., Brundage, M. A., Balakos, M. W., and Srinivas, G.,
Appl. Spectrosc. 49, 1151 (1995).
35. Almusaiteer, K., Ph.D. Dissertation, UniversityofAkron, Akron, OH,
1999.
36. Oh, S. H., and Eickel, C. C., J. Catal. 128, 526 (1991).
1. Yang, A. C., and Garland, C. W., J. Phys. Chem. 61, 1504 (1957).
2. Yates, J. T., Jr., Duncan, T. M., Worley, S. D., and Vaughan, R. W.,
J. Chem. Phys. 70, 1219 (1979).
3. Solymosi, F., and Rasko, J., J. Catal. 63, 217 (1980).
4. Hecker, W. C., and Bell, A. T., J. Catal. 84, 200 (1983).
5. Solymosi, F., and Pasztor, M., J. Phys. Chem. 89, 4789 (1985).
6. Wong, C., and McCabe, R. W., J. Catal. 107, 535 (1987).
7. Solymosi, F., Bansagi, T., and Novak, E., J. Catal. 112, 183 (1988).