1
14
GANG ET AL.
to N2, N2O, and NO is determined by surface oxygen 13. Bradley, J. M., Hopkinson, A., and King, D. A., J. Phys. Chem. 99,
1
7,032 (1995).
coverage and temperature. Low surface oxygen coverage
favorsnitrogen formation. Adsorbed NOx and N2Ox species
are actually inhibitors for ammonia oxidation but they also
lower the surface oxygen coverage. Hence, the selectivity
1
1
4. Van den Broek, A. C. M., Van Grondelle J., and Van Santen, R. A.,
J. Catal. 185(2), 297 (1999).
5. Van den Broek, A. C. M., Ph.D., thesis, Eindhoven University of Tech-
nology, (1998).
to nitrogen is improved by increasing the amount of these 16. Carley, A. F., Davies, P. R., and Roberts, M. W., Chem. Commun. 17,
1
793 (1998).
adsorbed species on silver surface.
1
1
7. Carley, A. F., Davies, P. R., Kulkarni, G. U., and Roberts, M. W., Catal.
Lett. 58, 97 (1999).
8. Afsin, B., Davies, P. R., Pashusky, A., Roberts, M. W., and Vincent,
D., Surf. Sci. 284, 109 (1993).
Generally speaking, silver alone, like Pt, is not a good
catalyst for selective ammonia oxidation to nitrogen be-
cause too much N2O is produced. It follows from the above
conclusions that blocking of the sites for oxygen dissocia- 19. Amores, J. M. G., Escribano, V. S., Ramis, G., and Busca, G., Appl.
Catal. B 13, 45 (1997).
0. Trombetta, M., Ramis, G., Busca, G., Montanari, B., and Vaccari, A.,
Langmuir 13, 4628 (1997).
tion is an effective way to improve the nitrogen selectivity,
but also would result in a loss of catalyst activity.
2
2
2
2
2
1. Ramis, G., Yi, L., and Busca, G., Catal. Today 28, 373 (1996).
2. Thornburg, D. M., and Madix, R. J., Surf. Sci. 220, 268 (1989).
3. Otto, K., and Shelef, M., J. Phys. Chem. 76(1), 37 (1972).
4. Otto, K., Shelef, M., and Kummer, J. T., J. Phys. Chem. 74(13), 2690
ACKNOWLEDGMENTS
The authors gratefully acknowledge the support of the Netherlands
Technology Foundation (STW) under the auspices of the Netherlands
Organization for Scientific Research (NWO).
(
1970).
2
2
2
5. Bao, X., Wild, U., Muhler, M., Pettinger, B., Schl o¨ gl, R., and Ertl, G.,
Surf. Sci. 425, 224 (1999).
6. Von Raben, K. U., Dorain, P. B., Chen, T. T., and Chang, R. K., Chem.
Phys. Lett. 95, 269 (1983).
REFERENCES
7. Matsuta, H., and Hirokawa, K., Surf. Sci. 172, L 555 (1986).
1
2
. Li, Y., and Armor, N., Appl. Catal. B 13, 131 (1997).
. Wollner, A., Lange, F., Schmelz, H., and Knozinger, H., Appl. Catal. 29. Stencel, J. M., “Raman Spectroscopy for Catalysis.” Van Nostrand–
A 94, 181 (1993). Reinhold, New York, (1990).
. De Boer, M., Huisman, H. M., Mos, R. J. M., Leliveld, R. G., Dillen, 30. Hisatsune, I. C., Devlin, J. P., and Wada, Y., J. Chem. Phys. 33(3), 714
28. Mcbreen, P. H., and Moskovits, M., J. Catal. 103, 188 (1987).
3
A. J., and Geus, J. W., Catal. Today 17, 189 (1993).
. Andrussow, L., Z. Angew. Chem. 39, 321 (1926).
. Bodenstein, M., Z. Elektrochem. 41, 466 (1935).
. Bodenstein, M., Z. Electrochem. 47, 501 (1935).
. Raschig, F., Z. Angew. Chem. 40, 1183 (1927).
. Zawadzki, J., Discuss. Faraday Soc. 8, 140 (1950).
. Fogel, Ya. M., Nadykto, B. T., Rybalko, V. F., Shvachko, V. I., and
Korobchanskaya, I. E., Kinet. Catal. 8, 431 (1964).
(1960).
4
5
6
7
8
9
31. Hisatsune, I. C., Devlin, J. P., and Wada, Y., Spectrochim. Acta 18, 1641
(1962).
32. Kugler, E. L., Kadet, A. B., and Gryder, J. W., J. Catal. 41, 72 (1976).
33. Bibart, C. H., and Ewing, E., J. Chem. Phys. 61(4), 1293 (1974).
34. Andrussow, L., Z. Elektrochem. 36, 756 (1930).
35. Carley, A. F., Davies, P. R., Roberts, M. W., Thomas, K. K., and Yan,
S., Chem. Commun. 1, 35 (1998).
1
1
1
0. Gland, J. L., and Korchak, V. N., J. Catal. 53, 9 (1978).
1. Mieher, W. D., and Ho, W., Surf. Sci. 322, 151 (1995).
2. Asscher, M., Guthrie, W. L., Lin, T. H., and Somorjai, G. A., J. Phys. 37. Carley, A. F., Davies, P. R., Roberts, M. W., Santra, A. K., and Thomas,
Chem. 88, 3233 (1984). K. K., Surf. Sci. 406, L587 (1998).
36. Carley, A. F., Davies, P. R., and Roberts, M. W., Curr. Opin. Solid State
Mater. Sci. 2(5), 525 (1997).