C O M M U N I C A T I O N S
Table 1. Selected Crystal Data for 1, and Calculated Geometry
Data (in Å and deg) for [(Porphine)Fe]2(η1,η1,µ-N2O2) (1-calc)
combinations of the ligand σ orbitals. The frontier spin orbitals
from the unrestricted open-shell calculation are shown in Figure 3.
The highest occupied R spin orbital exhibits more porphine
character while the lowest unoccupied spin ꢁ orbital displays more
metal character. The N atoms of the hyponitrite bridge form a
bonding interaction in both highest occupied spin orbitals.
Protonation of a toluene solution of 1 at 0 °C using HCl results
in the formation of N2O and (OEP)FeCl (eq 2).
Fe-O
O-N
N-N
NNO
∆Fe
1 (crystal; trans)
1-calc
trans-H.S.
trans-I.S.
trans-L.S.
cis-H.S.
1.889
1.375
1.250
108.5
0.402
1.909
1.951
1.831
1.899
1.945
1.831
1.376
1.364
1.398
1.390
1.379
1.403
1.269
1.280
1.266
1.254
1.262
1.258
108.9
109.3
107.4
117.0
117.9
116.5
0.482
0.272
0.249
0.485
0.279
0.232
cis-I.S.
cis-L.S.
[(OEP)Fe]2(µ-ONNO) + 2HCl f N2O + 2(OEP)FeCl + H2O
(2)
charges on the Fe, O, and N atoms are shown in Figure 2. To further
understand the charge distribution in the FeONNOFe moiety, we
used the Nalewajski-Mrozek scheme to calculate the bond orders.
Accordingly, the bond orders for Fe-O, O-N, and N-N in 1-calc
trans-H.S. (Figure 2) are 0.79, 1.25, and 1.84, respectively, which
supports the notion of an NdN double bond in the hyponitrite
bridge.
An IR spectrum of the headspace reveals new bands at 2236/2213
and 1298/1266 cm-1 assigned to υas and υs of N2O, respectively.
The use of the 15N-labeled 1 (labeled at hyponitrite) shifts the υas
bands to 2167/2144 cm-1; the corresponding υs bands were not
observed due to its occurrence outside the detection window.
We hypothesized that the protonation reaction is initiated by H+
attack on one of the O atoms of the hyponitrite bridge followed by
O-N bond cleavage to give N2O. This is supported by the
pronounced negative charge on the hyponitrite O atom in trans-
H.S. 1-calc obtained from the DFT calculation. Further studies are
underway to uncover the mechanism of the protonation reaction.
In summary, we have prepared and characterized the first isolable
hyponitrite iron porphyrin complex and describe the first established
hyponitrite O-bonding mode to a heme model.
Figure 2. Calculated atomic charges and bond orders (bo) for the
FeONNOFe moiety.
The Kohn-Sham orbitals of the trans H.S. species of 1-calc are
expected to be similar to those of square pyramidal metal
complexes, for which the highest occupied orbital and the lowest
unoccupied orbital are the result of antibonding interactions between
Acknowledgment. We are grateful to the National Institutes
of Health for funding (GM076640; GBR-A).
2
2
2
Supporting Information Available: Experimental procedure, com-
putational details, additional references, and CIF file for 1. This material
dz as well as d(x -y ) orbitals of the metal and the symmetrized
References
(1) Moenne-Loccoz, P. Nat. Prod. Rep. 2007, 24, 610–620.
(2) Yeung, N.; Lu, Y. Chem. BiodiVersity 2008, 5, 1437–1454.
(3) Franz, K. J.; Lippard, S. J. J. Am. Chem. Soc. 1999, 121, 10504–10512.
(4) Schneider, J. L.; Carrier, S. M.; Ruggiero, C. E.; Young, V. G.; Tolman,
W. B. J. Am. Chem. Soc. 1998, 120, 11408–11418.
(5) Arulsamy, N.; Bohle, D. S.; Imonigie, J. A.; Moore, R. C. Polyhedron
2007, 26, 4737–4745.
(6) Arulsamy, N.; Bohle, D. S.; Imonigie, J. A.; Levine, S. Angew. Chem.,
Int. Ed. 2002, 41, 2371–2373.
(7) Villalba, M. E. C.; Navaza, A.; Guida, J. A.; Varetti, E. L.; Aymonino,
P. J. Inorg. Chim. Acta 2006, 359, 707–712.
(8) Bottcher, H.-C.; Graf, M.; Mereiter, K.; Kirchner, K. Organometallics 2004,
23, 1269–1273.
(9) Bau, R.; Sabherwal, I. H.; Burg, A. B. J. Am. Chem. Soc. 1971, 93, 4926–
4928.
(10) Blomberg, L. M.; Blomberg, M. R. A.; Siegbahn, P. E. M. Biochim. Biophys.
Acta 2006, 1757, 31–46.
(11) Collman, J. P.; Dey, A.; Yang, Y.; Decreau, R. A.; Ohta, T.; Solomon,
E. I. J. Am. Chem. Soc. 2008, 130, 16498–16499.
(12) Varotsis, C.; Ohta, T.; Kitagawa, T.; Soulimane, T.; Pinakoulaki, E. Angew.
Chem., Int. Ed. 2007, 46, 2210–2214.
(13) McGraw, G. E.; Bernitt, D. L.; Hisatsune, I. C. Spectrochim. Acta 1967,
23A, 25–34.
(14) Cheng, R.-U.; Latos-Grazynski, L.; Balch, A. L. Inorg. Chem. 1982, 21,
2412–2418.
(15) Arulsamy, N.; Bohle, D. S.; Imonigie, J. A.; Sagan, E. S. Inorg. Chem.
1999, 38, 2716–2725.
(16) Soulimane, T.; Buse, G.; Bourenkov, G. P.; Bartunik, H. D.; Huber, R.;
Than, M. E. Embo J. 2000, 19, 1766–1776.
Figure 3. Frontier spin orbitals for high-spin 1-calc. HOSO and LUSO
denote the highest occupied and the lowest unoccupied spin orbitals,
respectively.
JA809781R
9
J. AM. CHEM. SOC. VOL. 131, NO. 7, 2009 2461