100
A. B. Siqueira et al.
Acknowledgements The authors thank FAPESP (Procs. 90/2932-4
and 2005/00926-4), CNPQ and CAPES Foundations (Brazil) for
financial support.
DSC
exo up
References
(a)
(b)
1. Ramamoorthy S, Raghavan A, Vijayaraghavan VR, Schutappa
M. Spectrophotometric studies on complexes of copper (II) and
uranyl. J Inorg Nucl Chem. 1969;31(6):1851–7.
2. Kim JJ, Cummings TE, Cok JA. Effect of pyruvate on the redox
behavior of the iron(III)-(III) couple. Anal Lett. 1972;5:703.
3. Raaghavan VV, Leussing DL. Equilibrium and kinetics of
pyruvate dimerization catalyzed by copper(II). J Indian Chem
Soc. 1977;54:68.
4. McCoy HN. The salts of Europium. J Am Chem Soc. 1939;61:
2455–6.
5. Choppin GB, Cannon R. Complexation of lanthanides by pyru-
vate. Inorg Chem. 1980;19:1889–92.
(c)
(d)
6. Brzyska W, Ozga W. Complexes of Y, La and light lanthanides
with pyruvic acid. Pol J Chem. 1984;58:385–91.
7. Brzyska W, Ozga W. Preparation and properties of heavy lan-
thanide pyruvates. Pol J Chem. 1985;59:233–8.
8. Siqueira AB, Carvaho CT, Rodrigues EC, Ionashiro EY, Bannach
G, Ionashiro M. Synthesis, characterization and thermal behav-
iour on solid pyruvates of light trivalent lanthanides. Ecl Quim.
2007;32:49–54.
(e)
(f)
(g)
(h)
9. Ionashiro M, Graner CAF, Zuanon Netto J. Titulac¸a˜o complex-
´
´
´
ometrica de lantanıdeos e ıtrio. Ecl Quim. 1983;8:29–32.
10. Socrates G. Infrared characteristic group frequencies. 2nd ed.
Wiley, New York; 1994. pp. 91, 236–237.
11. Silverstein RM, Webster FX. Spectrometric identification of organic
compounds. 6th ed. Wiley, New York; 1998. pp. 92, 93, 96, 97.
12. Cotton FA. In: Lewis J, Wilkin RG, editors. The infrared spectra
of transition metal complexes in modern coordination chemistry.
New York: Interscience; 1960. p. 379–86.
13. Nakamoto K. Infrared and Raman spectra of inorganic and
coordination compounds, part B. 5th ed. New York: Wiley; 1997.
p. 58–61.
873
373
773
573
673
473
Temperature/K
Fig. 3 The DSC curves of: (a) Tb(L)3ꢀ4.5H2O (m = 4.932 mg); (b)
Dy(L)3ꢀ3.5H2O (m = 4.822 mg); (c) Ho(L)3ꢀ3.5H2O (m = 5.005 mg);
(d) Er(L)3ꢀ2.5H2O (m = 5.115 mg); (e) Tm(L)3ꢀ3H2O (m = 5.008 mg);
(f)Yb(L)3ꢀ3H2O(m = 5.064 mg); (g)Lu(L)3ꢀ3H2O(m = 5.131 mg); (h)
Y(L)3ꢀ3H2O (m = 5.017 mg). L = pyruvate
14. Marques RN, Melios CB, Ionashiro M. Characterization and
thermal behaviour on solid state compounds of 4-methylbenzy-
lidenepyruvate with heavier trivalent lanthanides and ytrium(III).
Thermochim Acta Synth. 2003;395:145–50.
15. Fernandes NS, Carvalho Filho MAS, Melios CB, Ionashiro M.
Solid-state compound of 4-chlorobenzylidenepyruvate with lan-
thanides. J Therm Anal Calorim. 2000;59:663–8.
16. Fernandes NS, Carvalho Filho MAS, Melios CB, Ionashiro M.
Thermal studies of solid 4-chlorobenzylidenepyruvates of heavy
lanthanides(III) and yttrium(III). J Therm Anal Calorim. 2003;73:
307–14.
Conclusions
The general formula of the compounds were obtained with
respect to the first steps of mass loss in TG/DTG curves,
referring to water of hydration and final residue, oxide,
their compounds and complexometry with EDTA.
The X-ray powder patterns verified that the heavy tri-
valent lanthanide pyruvates were obtained in the amor-
phous state.
17. Schnitzler E, Melios CB, Ionashiro M. Solid-state compounds of
4-methoxybenzilidenepyruvate and cinnamylidenepyruvates with
thorium (IV). J Therm Anal Calorim. 2002;70:581–92.
18. Miyano MH, Melios CB, Ribeiro CA, Redigolo H, Ionashiro M.
The preparation, thermal decomposition of solid state compounds
of 4-dimethylaminobenzylidenepyruvate and trivalent lantha-
nides and yttrium. Thermochim Acta. 1993;221:53–62.
19. de Oliveira LCS, Melios CB, Spirandeli Crespi M, Ribeiro CA,
Ionashiro M. Preparation, thermal decomposition of solid state
compounds. 4methoxybenzylidenepyruvate and trivalent lantha-
nides and yttrium. Thermochim Acta. 1993;219:215–24.
The TG/DTG and DSC curves provided information
concerning the thermal stability and thermal decomposition
of these compounds.
123